IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2736-d161719.html
   My bibliography  Save this article

The Effects of Material’s Transport on Various Steps of Production System on Energetic Efficiency of Biodiesel Production

Author

Listed:
  • Olga Orynycz

    (Department of Production Management, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Antoni Świć

    (Faculty of Mechanical Engineering, Institute of Technological Information Systems, Lublin University of Technology, 20-618 Lublin, Poland)

Abstract

Rapeseed plantation biodiesel production systems require the transportation of goods, like raw materials, machines and tools, and products between various conversion stages of agricultural as well as industrial subsystems. Each transportation step requires the consumption of some energy. This consumption decreases the net amount of energy delivered out of the biofuel production system, and consequently decreases the energetic efficiency of the system. The majority of studies on biofuel sustainability are done by means of the LCA method with the use of a data average for some region and period of time. Such analyses do not reveal the possible causes of the conclusions determined. The present work deals with computer modelling of the influence of the energy consumed on those transport routes on the energetic efficiency of the production system. The model enables determination of the effects caused by changes introduced to technological parameters. The effects caused by variation of fuel consumption, the load capacity of transportation means, size of plantation, distribution and sizes of individual fields, distances between fields, plantation yield, and finally the distance between the plantation and the industrial facility are studied using the numerical model developed earlier. This approach is aimed towards identifying the reasons for the behavior of a system controlled by many somewhat coupled variables.

Suggested Citation

  • Olga Orynycz & Antoni Świć, 2018. "The Effects of Material’s Transport on Various Steps of Production System on Energetic Efficiency of Biodiesel Production," Sustainability, MDPI, vol. 10(8), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2736-:d:161719
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2736/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2736/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Czech Artur & Biezdudnaja Anna & Lewczuk Jerzy & Razumowskij Władimir, 2018. "Quantitative assessment of urban transport development – a spatial approach," Engineering Management in Production and Services, Sciendo, vol. 10(1), pages 32-44, March.
    2. Lior, Noam, 2012. "Sustainable energy development (May 2011) with some game-changers," Energy, Elsevier, vol. 40(1), pages 3-18.
    3. Oseweuba Valentine Okoro & Zhifa Sun & John Birch, 2018. "Catalyst-Free Biodiesel Production Methods: A Comparative Technical and Environmental Evaluation," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    4. Beatrice Marchi & Simone Zanoni, 2017. "Supply Chain Management for Improved Energy Efficiency: Review and Opportunities," Energies, MDPI, vol. 10(10), pages 1-29, October.
    5. Zhang, Yongli & Colosi, Lisa M., 2013. "Practical ambiguities during calculation of energy ratios and their impacts on life cycle assessment calculations," Energy Policy, Elsevier, vol. 57(C), pages 630-633.
    6. Fontaras, Georgios & Skoulou, Vassiliki & Zanakis, Georgios & Zabaniotou, Anastasia & Samaras, Zissis, 2012. "Integrated environmental assessment of energy crops for biofuel and energy production in Greece," Renewable Energy, Elsevier, vol. 43(C), pages 201-209.
    7. Talens, Laura & Villalba, Gara & Gabarrell, Xavier, 2007. "Exergy analysis applied to biodiesel production," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 397-407.
    8. Liao, Wenjie & Heijungs, Reinout & Huppes, Gjalt, 2011. "Is bioethanol a sustainable energy source? An energy-, exergy-, and emergy-based thermodynamic system analysis," Renewable Energy, Elsevier, vol. 36(12), pages 3479-3487.
    9. Umberto Di Matteo & Benedetto Nastasi & Angelo Albo & Davide Astiaso Garcia, 2017. "Energy Contribution of OFMSW (Organic Fraction of Municipal Solid Waste) to Energy-Environmental Sustainability in Urban Areas at Small Scale," Energies, MDPI, vol. 10(2), pages 1-13, February.
    10. Mario R. Giraldi-Díaz & Lorena De Medina-Salas & Eduardo Castillo-González & Max De la Cruz-Benavides, 2018. "Environmental Impact Associated with the Supply Chain and Production of Biodiesel from Jatropha curcas L. through Life Cycle Analysis," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    11. Painuly, J.P. & Rao, Hemlata & Parikh, Jyoti, 1995. "A rural energy-agriculture interaction model applied to Karnataka state," Energy, Elsevier, vol. 20(3), pages 219-233.
    12. Russo, D. & Dassisti, M. & Lawlor, V. & Olabi, A.G., 2012. "State of the art of biofuels from pure plant oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4056-4070.
    13. Benjamin McLellan & Qi Zhang & Hooman Farzaneh & N. Agya Utama & Keiichi N. Ishihara, 2012. "Resilience, Sustainability and Risk Management: A Focus on Energy," Challenges, MDPI, vol. 3(2), pages 1-30, August.
    14. David J. Murphy & Charles A.S. Hall & Michael Dale & Cutler Cleveland, 2011. "Order from Chaos: A Preliminary Protocol for Determining the EROI of Fuels," Sustainability, MDPI, vol. 3(10), pages 1-20, October.
    15. Nasir, N.F. & Daud, W.R.W. & Kamarudin, S.K. & Yaakob, Z., 2013. "Process system engineering in biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 631-639.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacek Caban & Jan Vrabel & Dorota Górnicka & Radosław Nowak & Maciej Jankiewicz & Jonas Matijošius & Marek Palka, 2023. "Overview of Energy Harvesting Technologies Used in Road Vehicles," Energies, MDPI, vol. 16(9), pages 1-32, April.
    2. Slavin Viktor & Shuba Yevheniy & Korpach Anatolii & Gutarevych Serhiy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas, 2022. "The Performance of a Car with Various Engine Power Systems – Part II," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 141-151, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 2: Total Economy Expenditure Perspective," Energies, MDPI, vol. 8(11), pages 1-22, November.
    2. Carey W. King & John P. Maxwell & Alyssa Donovan, 2015. "Comparing World Economic and Net Energy Metrics, Part 1: Single Technology and Commodity Perspective," Energies, MDPI, vol. 8(11), pages 1-26, November.
    3. Hiroaki Yaritani & Jun Matsushima, 2014. "Analysis of the Energy Balance of Shale Gas Development," Energies, MDPI, vol. 7(4), pages 1-21, April.
    4. Victor Court, 2019. "An Estimation of Different Minimum Exergy Return Ratios Required for Society," Biophysical Economics and Resource Quality, Springer, vol. 4(3), pages 1-13, September.
    5. David J. Murphy & Michael Carbajales-Dale & Devin Moeller, 2016. "Comparing Apples to Apples: Why the Net Energy Analysis Community Needs to Adopt the Life-Cycle Analysis Framework," Energies, MDPI, vol. 9(11), pages 1-15, November.
    6. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    7. Genc, S. & Sorguven, E. & Ozilgen, M. & Aksan Kurnaz, I., 2013. "Unsteady exergy destruction of the neuron under dynamic stress conditions," Energy, Elsevier, vol. 59(C), pages 422-431.
    8. Tsoutsos, Theocharis & Chatzakis, Michael & Sarantopoulos, Ioannis & Nikologiannis, Athanasios & Pasadakis, Nikos, 2013. "Effect of wastewater irrigation on biodiesel quality and productivity from castor and sunflower oil seeds," Renewable Energy, Elsevier, vol. 57(C), pages 211-215.
    9. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    10. Florian Fizaine & Victor Court, 2016. "The energy-economic growth relationship: a new insight from the EROI perspective," Working Papers 1601, Chaire Economie du climat.
    11. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    12. Gualberto Zavarize, Danilo & Braun, Heder & Diniz de Oliveira, Jorge, 2021. "Methanolysis of low-FFA waste cooking oil with novel carbon-based heterogeneous acid catalyst derived from Amazon açaí berry seeds," Renewable Energy, Elsevier, vol. 171(C), pages 621-634.
    13. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    14. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    15. Charles Guay-Boutet, 2023. "Estimating the Disaggregated Standard EROI of Canadian Oil Sands Extracted via Open-pit Mining, 1997–2016," Biophysical Economics and Resource Quality, Springer, vol. 8(1), pages 1-21, March.
    16. Rafael Tordecilla-Madera & Andrés Polo & Adrián Cañón, 2018. "Vehicles Allocation for Fruit Distribution Considering CO 2 Emissions and Decisions on Subcontracting," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    17. Liu, Gang & Lucas, Mario & Shen, Lei, 2008. "Rural household energy consumption and its impacts on eco-environment in Tibet: Taking Taktse county as an example," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1890-1908, September.
    18. Song, Xingjuan & Zhang, Dongming, 2014. "Bimetallic Ag–Ni/C particles as cathode catalyst in AFCs (alkaline fuel cells)," Energy, Elsevier, vol. 70(C), pages 223-230.
    19. Haiyun, Cui & Zhixiong, Huang & Yüksel, Serhat & Dinçer, Hasan, 2021. "Analysis of the innovation strategies for green supply chain management in the energy industry using the QFD-based hybrid interval valued intuitionistic fuzzy decision approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Küçük, Kübra & Tevatia, Rahul & Sorgüven, Esra & Demirel, Yaşar & Özilgen, Mustafa, 2015. "Bioenergetics of growth and lipid production in Chlamydomonas reinhardtii," Energy, Elsevier, vol. 83(C), pages 503-510.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2736-:d:161719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.