IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i6p1817-d149941.html
   My bibliography  Save this article

Integrating a Procurement Management Process into Critical Chain Project Management (CCPM): A Case-Study on Oil and Gas Projects, the Piping Process

Author

Listed:
  • Sung-Hwan Jo

    (Dae-Woo Engineering and Construction, Engineering Management Team, Division of Plant Engineering, 75 Saemunan-Ro, Jongro-Ku, Seoul 03182, Korea)

  • Eul-Bum Lee

    (Graduate Institute of Ferrous Technology & Graduate School of Engineering Mastership, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

  • Kyoung-Youl Pyo

    (Graduate Institute of Ferrous Technology & Graduate School of Engineering Mastership, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

Abstract

Engineering, Procurement, and Construction (EPC) of oil and gas megaprojects often experience cost overruns due to substantial schedule delays. One of the greatest causes of these overruns is the mismanagement of the project schedule, with the piping works (prefabrication and installation) occupying a majority of that schedule. As such, an effective methodology for scheduling, planning, and controlling of piping activities is essential for project success. To meet this need, this study used the Critical Chain Project Management (CCPM) to develop a piping construction delay prevention methodology, incorporating material procurement processes for EPC megaprojects. Recent studies indicate that the traditional scheduling method used on oil and gas mega projects has critical limitations regarding resource scarcity, calculation of activity duration, and dealing with uncertainties. To overcome these limitations, the Theory of Constraints-based CCPM was proposed and implemented to provide schedule buffers management. Nonexistent in literature, and of critical importance, is this paper’s focus on the resource buffer, representing material uncertainty and management. Furthermore, this paper presents a step-by-step process and flow chart for project, construction, and material managers to effectively manage a resource buffer through the CCPM process. This study extends the knowledge of traditional resource buffers in CCPM to improve material and procurement management, thus avoiding the shortage of piping materials and minimizing delays. The resultant process was validated by both deterministic and probabilistic schedule analysis through two case studies of a crude pump unit and propylene compressor installation at a Middle Eastern Refinery Plant Installation. The results show that the CCPM method effectively handles uncertainty, reducing the duration of piping works construction by about a 35% when compared to the traditional method. Furthermore, the results show that, in not considering material uncertainty (resource buffers), projects schedules have the potential for approximately a 5% schedule growth with the accompanying delay charges. The findings have far-reaching applications for both oil and gas and other sectors. This CCPM case-study exemplifies that the material management method represents an opportunity for industry to administrate pipeline installation projects more effectively, eliminate project duration extension, develop schedule-based risk mitigation measures pre-construction, and enable project teams to efficiently manage limited human and material resources.

Suggested Citation

  • Sung-Hwan Jo & Eul-Bum Lee & Kyoung-Youl Pyo, 2018. "Integrating a Procurement Management Process into Critical Chain Project Management (CCPM): A Case-Study on Oil and Gas Projects, the Piping Process," Sustainability, MDPI, vol. 10(6), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1817-:d:149941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/6/1817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/6/1817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tukel, Oya I. & Rom, Walter O. & Eksioglu, Sandra Duni, 2006. "An investigation of buffer sizing techniques in critical chain scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 401-416, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Cunha, Richard Alex & Rangel, Luís Alberto Duncan & Rudolf, Christian A. & Santos, Luiza dos, 2022. "A decision support approach employing the PROMETHEE method and risk factors for critical supply assessment in large-scale projects," Operations Research Perspectives, Elsevier, vol. 9(C).
    2. Bajomo, Mary & Ogbeyemi, Akinola & Zhang, Wenjun, 2022. "A systems dynamics approach to the management of material procurement for Engineering, Procurement and Construction industry," International Journal of Production Economics, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    2. Janusz Kulejewski & Nabi Ibadov & Jerzy Rosłon & Jacek Zawistowski, 2021. "Cash Flow Optimization for Renewable Energy Construction Projects with a New Approach to Critical Chain Scheduling," Energies, MDPI, vol. 14(18), pages 1-15, September.
    3. Zhang, Jingwen & Elmaghraby, Salah E., 2014. "The relevance of the “alphorn of uncertainty” to the financial management of projects under uncertainty," European Journal of Operational Research, Elsevier, vol. 238(1), pages 65-76.
    4. Dorota Kuchta, 2010. "Generalization of the critical chain method supporting the management of projects with a high degree of uncertainty and imperfect information," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(2), pages 77-90.
    5. She, Bingling & Chen, Bo & Hall, Nicholas G., 2021. "Buffer sizing in critical chain project management by network decomposition," Omega, Elsevier, vol. 102(C).
    6. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    7. Mohammadreza Sharifi Ghazvini & Vahidreza Ghezavati & Sadigh Raissi & Ahmad Makui, 2017. "An Integrated Efficiency–Risk Approach in Sustainable Project Control," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    8. Asadabadi, Mehdi Rajabi & Zwikael, Ofer, 2021. "Integrating risk into estimations of project activities' time and cost: A stratified approach," European Journal of Operational Research, Elsevier, vol. 291(2), pages 482-490.
    9. Guofeng Ma & Jianyao Jia & Tiancheng Zhu & Shan Jiang, 2019. "A Critical Design Structure Method for Project Schedule Development under Rework Risks," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    10. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    11. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    12. Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2016. "Determination of critical chain project buffer based on information flow interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1146-1157, September.
    13. Yan Zhao & Nanfang Cui & Wendi Tian, 2020. "A two-stage approach for the critical chain project rescheduling," Annals of Operations Research, Springer, vol. 285(1), pages 67-95, February.
    14. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    15. Abdul Razaque & Christian Bach & Nyembo salama & Aziz Alotaibi, 2012. "Fostering Project Scheduling and Controlling Risk Management," Papers 1210.2021, arXiv.org.
    16. HazIr, Öncü & Haouari, Mohamed & Erel, Erdal, 2010. "Robust scheduling and robustness measures for the discrete time/cost trade-off problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 633-643, December.
    17. Junguang Zhang & Xiwei Song & Estrella Díaz, 2017. "Critical chain project buffer sizing based on resource constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(3), pages 671-683, February.
    18. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    19. Guofeng Ma & Shan Jiang & Tiancheng Zhu & Jianyao Jia, 2019. "A Novel Method of Developing Construction Projects Schedule under Rework Scenarios," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    20. Zhang, Junguang & Song, Xiwei & Díaz, Estrella, 2016. "Project buffer sizing of a critical chain based on comprehensive resource tightness," European Journal of Operational Research, Elsevier, vol. 248(1), pages 174-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:6:p:1817-:d:149941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.