IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v172y2006i2p401-416.html
   My bibliography  Save this article

An investigation of buffer sizing techniques in critical chain scheduling

Author

Listed:
  • Tukel, Oya I.
  • Rom, Walter O.
  • Eksioglu, Sandra Duni

Abstract

No abstract is available for this item.

Suggested Citation

  • Tukel, Oya I. & Rom, Walter O. & Eksioglu, Sandra Duni, 2006. "An investigation of buffer sizing techniques in critical chain scheduling," European Journal of Operational Research, Elsevier, vol. 172(2), pages 401-416, July.
  • Handle: RePEc:eee:ejores:v:172:y:2006:i:2:p:401-416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(04)00827-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    2. Hartmann, Sönke & Kolisch, R., 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 11180, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Oya Icmeli & S. Selcuk Erenguc, 1996. "A Branch and Bound Procedure for the Resource Constrained Project Scheduling Problem with Discounted Cash Flows," Management Science, INFORMS, vol. 42(10), pages 1395-1408, October.
    4. James H. Patterson, 1984. "A Comparison of Exact Approaches for Solving the Multiple Constrained Resource, Project Scheduling Problem," Management Science, INFORMS, vol. 30(7), pages 854-867, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. HazIr, Öncü & Haouari, Mohamed & Erel, Erdal, 2010. "Robust scheduling and robustness measures for the discrete time/cost trade-off problem," European Journal of Operational Research, Elsevier, vol. 207(2), pages 633-643, December.
    2. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    3. Zhang, Jingwen & Elmaghraby, Salah E., 2014. "The relevance of the “alphorn of uncertainty” to the financial management of projects under uncertainty," European Journal of Operational Research, Elsevier, vol. 238(1), pages 65-76.
    4. Cui, Nanfang & Demeulemeester, Erik & Bie, Li, 2016. "Incorporation of activity sensitivity measures into buffer management to manage project schedule riskAuthor-Name: Hu, Xuejun," European Journal of Operational Research, Elsevier, vol. 249(2), pages 717-727.
    5. Janusz Kulejewski & Nabi Ibadov & Jerzy Rosłon & Jacek Zawistowski, 2021. "Cash Flow Optimization for Renewable Energy Construction Projects with a New Approach to Critical Chain Scheduling," Energies, MDPI, vol. 14(18), pages 1-15, September.
    6. Mohammadreza Sharifi Ghazvini & Vahidreza Ghezavati & Sadigh Raissi & Ahmad Makui, 2017. "An Integrated Efficiency–Risk Approach in Sustainable Project Control," Sustainability, MDPI, vol. 9(9), pages 1-20, September.
    7. Junguang Zhang & Xiwei Song & Estrella Díaz, 2017. "Critical chain project buffer sizing based on resource constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(3), pages 671-683, February.
    8. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    9. Abdul Razaque & Christian Bach & Nyembo salama & Aziz Alotaibi, 2012. "Fostering Project Scheduling and Controlling Risk Management," Papers 1210.2021, arXiv.org.
    10. Sung-Hwan Jo & Eul-Bum Lee & Kyoung-Youl Pyo, 2018. "Integrating a Procurement Management Process into Critical Chain Project Management (CCPM): A Case-Study on Oil and Gas Projects, the Piping Process," Sustainability, MDPI, vol. 10(6), pages 1-22, May.
    11. Junguang Zhang & Xiwei Song & Hongyu Chen & Ruixia (Sandy) Shi, 2016. "Determination of critical chain project buffer based on information flow interactions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(9), pages 1146-1157, September.
    12. Asadabadi, Mehdi Rajabi & Zwikael, Ofer, 2021. "Integrating risk into estimations of project activities' time and cost: A stratified approach," European Journal of Operational Research, Elsevier, vol. 291(2), pages 482-490.
    13. Guofeng Ma & Shan Jiang & Tiancheng Zhu & Jianyao Jia, 2019. "A Novel Method of Developing Construction Projects Schedule under Rework Scenarios," Sustainability, MDPI, vol. 11(20), pages 1-25, October.
    14. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    15. Dorota Kuchta, 2010. "Generalization of the critical chain method supporting the management of projects with a high degree of uncertainty and imperfect information," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 20(2), pages 77-90.
    16. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    17. Zhang, Junguang & Song, Xiwei & Díaz, Estrella, 2016. "Project buffer sizing of a critical chain based on comprehensive resource tightness," European Journal of Operational Research, Elsevier, vol. 248(1), pages 174-182.
    18. She, Bingling & Chen, Bo & Hall, Nicholas G., 2021. "Buffer sizing in critical chain project management by network decomposition," Omega, Elsevier, vol. 102(C).
    19. Yan Zhao & Nanfang Cui & Wendi Tian, 2020. "A two-stage approach for the critical chain project rescheduling," Annals of Operations Research, Springer, vol. 285(1), pages 67-95, February.
    20. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    21. Xuejun Hu & Erik Demeulemeester & Nanfang Cui & Jianjiang Wang & Wendi Tian, 2017. "Improved critical chain buffer management framework considering resource costs and schedule stability," Flexible Services and Manufacturing Journal, Springer, vol. 29(2), pages 159-183, June.
    22. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    23. Guofeng Ma & Jianyao Jia & Tiancheng Zhu & Shan Jiang, 2019. "A Critical Design Structure Method for Project Schedule Development under Rework Risks," Sustainability, MDPI, vol. 11(24), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    2. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    3. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    4. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    5. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    6. Ballestí­n, Francisco & Valls, Vicente & Quintanilla, Sacramento, 2008. "Pre-emption in resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1136-1152, September.
    7. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
    8. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    9. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    10. Fleszar, Krzysztof & Hindi, Khalil S., 2004. "Solving the resource-constrained project scheduling problem by a variable neighbourhood search," European Journal of Operational Research, Elsevier, vol. 155(2), pages 402-413, June.
    11. Vega-Velázquez, Miguel Ángel & García-Nájera, Abel & Cervantes, Humberto, 2018. "A survey on the Software Project Scheduling Problem," International Journal of Production Economics, Elsevier, vol. 202(C), pages 145-161.
    12. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    13. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.
    14. Bredael, Dries & Vanhoucke, Mario, 2023. "Multi-project scheduling: A benchmark analysis of metaheuristic algorithms on various optimisation criteria and due dates," European Journal of Operational Research, Elsevier, vol. 308(1), pages 54-75.
    15. Changjiu Li & Yong Zhang & Xichao Su & Xinwei Wang, 2022. "An Improved Optimization Algorithm for Aeronautical Maintenance and Repair Task Scheduling Problem," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    16. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    17. F. Perez & T. Gomez, 2016. "Multiobjective project portfolio selection with fuzzy constraints," Annals of Operations Research, Springer, vol. 245(1), pages 7-29, October.
    18. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    19. Junguang Zhang & Dan Wan, 2021. "Determination of early warning time window for bottleneck resource buffer," Annals of Operations Research, Springer, vol. 300(1), pages 289-305, May.
    20. Bhaskar, Tarun & Pal, Manabendra N. & Pal, Asim K., 2011. "A heuristic method for RCPSP with fuzzy activity times," European Journal of Operational Research, Elsevier, vol. 208(1), pages 57-66, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:172:y:2006:i:2:p:401-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.