IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1136-1152.html
   My bibliography  Save this article

Pre-emption in resource-constrained project scheduling

Author

Listed:
  • Ballestí­n, Francisco
  • Valls, Vicente
  • Quintanilla, Sacramento

Abstract

The Resource-Constrained Project Scheduling Project (RCPSP), together with some of its extensions, has been widely studied. A fundamental assumption in this basic problem is that activities in progress are non-preemptable. Very little effort has been made to uncover the potential benefits of discrete activity pre-emption, and the papers dealing with this issue have reached the conclusion that it has little effect on project length when constant resource availability levels are defined. In this paper we show how three basic elements of many heuristics for the RCPSP - codification, serial SGS and double justification - can be adapted to deal with interruption. The paper is mainly focussed on problem 1_PRCPSP, a generalization of the RCPSP where a maximum of one interruption per activity is allowed. However, it is also shown how these three elements can be further adapted to deal with more general pre-emptive problems. Computational experiments on the standard j30 and j120 sets support the conclusion that pre-emption does help to decrease project length when compared to the no-interruption case. They also prove the usefulness of the justification in the presence of pre-emption. The justification is a RCPS technique that can be easily incorporated into a wide range of algorithms for the RCPSP, increasing their solution quality - maintaining the number of schedules calculated.

Suggested Citation

  • Ballestí­n, Francisco & Valls, Vicente & Quintanilla, Sacramento, 2008. "Pre-emption in resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1136-1152, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1136-1152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00590-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jan Weogon glarz, 1981. "Project Scheduling with Continuously-Divisible, Doubly Constrained Resources," Management Science, INFORMS, vol. 27(9), pages 1040-1053, September.
    2. Demeulemeester, Erik L. & Herroelen, Willy S., 1996. "An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 334-348, April.
    3. Hartmann, Sonke & Kolisch, Rainer, 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 127(2), pages 394-407, December.
    4. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    5. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    6. Sprecher, Arno & Kolisch, Rainer & Drexl, Andreas, 1995. "Semi-active, active, and non-delay schedules for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 94-102, January.
    7. Rainer Kolisch & Arno Sprecher & Andreas Drexl, 1995. "Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems," Management Science, INFORMS, vol. 41(10), pages 1693-1703, October.
    8. Hartmann, Sönke & Kolisch, R., 2000. "Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 11180, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    9. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    10. Jerome D. Wiest, 1964. "Some Properties of Schedules for Large Projects with Limited Resources," Operations Research, INFORMS, vol. 12(3), pages 395-418, June.
    11. Tsubakitani, Shigeru & Deckro, Richard F., 1990. "A heuristic for multi-project scheduling with limited resources in the housing industry," European Journal of Operational Research, Elsevier, vol. 49(1), pages 80-91, November.
    12. James H. Patterson, 1984. "A Comparison of Exact Approaches for Solving the Multiple Constrained Resource, Project Scheduling Problem," Management Science, INFORMS, vol. 30(7), pages 854-867, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Averbakh, Igor, 2010. "Nash equilibria in competitive project scheduling," European Journal of Operational Research, Elsevier, vol. 205(3), pages 552-556, September.
    2. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    3. Moukrim, Aziz & Quilliot, Alain & Toussaint, Hélène, 2015. "An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration," European Journal of Operational Research, Elsevier, vol. 244(2), pages 360-368.
    4. Quintanilla, Sacramento & Pérez, Ángeles & Lino, Pilar & Valls, Vicente, 2012. "Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres," European Journal of Operational Research, Elsevier, vol. 219(1), pages 59-72.
    5. Michael Jahr, 2022. "Teaching Mathematical Modelling and Programming with GAMS in Dual Management Master Curricula Using Flipped Classrooms and Open Book Exams," SN Operations Research Forum, Springer, vol. 3(3), pages 1-12, September.
    6. Fündeling, C.-U. & Trautmann, N., 2010. "A priority-rule method for project scheduling with work-content constraints," European Journal of Operational Research, Elsevier, vol. 203(3), pages 568-574, June.
    7. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    8. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    9. Arda Turkgenci & Huseyin Guden & Mehmet Gülşen, 2021. "Decomposition based extended project scheduling for make-to-order production," Operational Research, Springer, vol. 21(2), pages 801-825, June.
    10. Aidin Delgoshaei & Timon Rabczuk & Ahad Ali & Mohd Khairol Anuar Ariffin, 2017. "An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources," Annals of Operations Research, Springer, vol. 259(1), pages 85-117, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    2. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
    3. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    4. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
    5. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    6. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    7. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    8. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    9. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    10. Valls, Vicente & Quintanilla, Sacramento & Ballestin, Francisco, 2003. "Resource-constrained project scheduling: A critical activity reordering heuristic," European Journal of Operational Research, Elsevier, vol. 149(2), pages 282-301, September.
    11. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    12. Yamashita, Denise Sato & Armentano, Vinicius Amaral & Laguna, Manuel, 2006. "Scatter search for project scheduling with resource availability cost," European Journal of Operational Research, Elsevier, vol. 169(2), pages 623-637, March.
    13. Cédric Verbeeck & Vincent Peteghem & Mario Vanhoucke & Pieter Vansteenwegen & El-Houssaine Aghezzaf, 2017. "A metaheuristic solution approach for the time-constrained project scheduling problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 353-371, March.
    14. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
    15. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    16. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    17. Rodrigues, Sávio B. & Yamashita, Denise S., 2010. "An exact algorithm for minimizing resource availability costs in project scheduling," European Journal of Operational Research, Elsevier, vol. 206(3), pages 562-568, November.
    18. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2005. "Justification and RCPSP: A technique that pays," European Journal of Operational Research, Elsevier, vol. 165(2), pages 375-386, September.
    19. Fleszar, Krzysztof & Hindi, Khalil S., 2004. "Solving the resource-constrained project scheduling problem by a variable neighbourhood search," European Journal of Operational Research, Elsevier, vol. 155(2), pages 402-413, June.
    20. Tseng, Lin-Yu & Chen, Shih-Chieh, 2006. "A hybrid metaheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 707-721, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1136-1152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.