IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v259y2017i1d10.1007_s10479-016-2336-8.html
   My bibliography  Save this article

An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources

Author

Listed:
  • Aidin Delgoshaei

    (University Putra Malaysia (UPM))

  • Timon Rabczuk

    (Bauhaus-Universität Weimar)

  • Ahad Ali

    (Lawrence Technological University)

  • Mohd Khairol Anuar Ariffin

    (University Putra Malaysia (UPM))

Abstract

The issue resource over-allocating is a big concern for project engineers in the process of scheduling project activities. Resources over-allocating are frequently seen after scheduling of a project in practice which causes the schedule to be useless. Modifying an over-allocated schedule is very complicated and needs a lot of efforts and time. In this research a new method is developed for modifying over-allocated schedules in multi-mode resource constrained project scheduling problems with positive cash flows (MRCPSP-PDC). The aim is maximizing net present value of the MRCPSPs (or logically minimizing negative cash flows). The proposed method is designed to consider all types of activity precedence including Finish to Start, Start to Start, Finish to Finish and Start to Finish and also lags between activities. It can also be used alone or as a macro in Microsoft Office Project $$^{\textregistered }$$ ® Software to modify resource over-allocated days after scheduling a project. In this research progress payment method and preemptive resources are considered. The proposed approach maximizes NPV by scheduling activities through the resource calendar respecting to the available level of pre-emptive resources and activity numbers. To examine the performance of the proposed method a number of experiments that is derived from the literature are solved. The results are then compared with the state where resource constraints are relaxed and also Simulated Annealing algorithm. The outcomes show that the proposed algorithm can provide modified schedules with no over-allocated days for experiment with 1000 activities and 100 preemptive resources in a few seconds. The method is then applied for scheduling a manufacturing project in practice.

Suggested Citation

  • Aidin Delgoshaei & Timon Rabczuk & Ahad Ali & Mohd Khairol Anuar Ariffin, 2017. "An applicable method for modifying over-allocated multi-mode resource constraint schedules in the presence of preemptive resources," Annals of Operations Research, Springer, vol. 259(1), pages 85-117, December.
  • Handle: RePEc:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-016-2336-8
    DOI: 10.1007/s10479-016-2336-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-016-2336-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-016-2336-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
    2. A. H. Russell, 1970. "Cash Flows in Networks," Management Science, INFORMS, vol. 16(5), pages 357-373, January.
    3. D. Debels & M. Vanhoucke, 2006. "The impact of various activity assumptions on the lead-time and resource utilization of resource-constrained projects," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/385, Ghent University, Faculty of Economics and Business Administration.
    4. Sönke Hartmann, 2001. "Project Scheduling with Multiple Modes: A Genetic Algorithm," Annals of Operations Research, Springer, vol. 102(1), pages 111-135, February.
    5. Demeulemeester, Erik L. & Herroelen, Willy S., 1996. "An efficient optimal solution procedure for the preemptive resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 90(2), pages 334-348, April.
    6. Antonio Lova & Pilar Tormos, 2001. "Analysis of Scheduling Schemes and Heuristic Rules Performance in Resource-Constrained Multiproject Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 263-286, February.
    7. F. Brian Talbot, 1982. "Resource-Constrained Project Scheduling with Time-Resource Tradeoffs: The Nonpreemptive Case," Management Science, INFORMS, vol. 28(10), pages 1197-1210, October.
    8. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    9. Chung-Yee Lee & Lei Lei, 2001. "Multiple-Project Scheduling with Controllable Project Duration and Hard Resource Constraint: Some Solvable Cases," Annals of Operations Research, Springer, vol. 102(1), pages 287-307, February.
    10. Manuel Castejón-Limas & Joaquín Ordieres-Meré & Ana González-Marcos & Víctor González-Castro, 2011. "Effort estimates through project complexity," Annals of Operations Research, Springer, vol. 186(1), pages 395-406, June.
    11. Gündüz Ulusoy & Funda Sivrikaya-Şerifoğlu & Şule Şahin, 2001. "Four Payment Models for the Multi-Mode Resource Constrained Project Scheduling Problem with Discounted Cash Flows," Annals of Operations Research, Springer, vol. 102(1), pages 237-261, February.
    12. Ballestí­n, Francisco & Valls, Vicente & Quintanilla, Sacramento, 2008. "Pre-emption in resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1136-1152, September.
    13. Kolisch, Rainer, 1996. "Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation," European Journal of Operational Research, Elsevier, vol. 90(2), pages 320-333, April.
    14. Damay, Jean & Quilliot, Alain & Sanlaville, Eric, 2007. "Linear programming based algorithms for preemptive and non-preemptive RCPSP," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1012-1022, November.
    15. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    16. Arno Sprecher, 2000. "Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements," Management Science, INFORMS, vol. 46(5), pages 710-723, May.
    17. Elmaghraby, Salah E. & Herroelen, Willy S., 1990. "The scheduling of activities to maximize the net present value of projects," European Journal of Operational Research, Elsevier, vol. 49(1), pages 35-49, November.
    18. Lean Yu & Shouyang Wang & Fenghua Wen & Kin Lai, 2012. "Genetic algorithm-based multi-criteria project portfolio selection," Annals of Operations Research, Springer, vol. 197(1), pages 71-86, August.
    19. J. Alcaraz & C. Maroto, 2001. "A Robust Genetic Algorithm for Resource Allocation in Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 83-109, February.
    20. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy & Leus, Roel, 2005. "The use of buffers in project management: The trade-off between stability and makespan," International Journal of Production Economics, Elsevier, vol. 97(2), pages 227-240, August.
    21. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    22. N.R. Achuthan & A. Hardjawidjaja, 2001. "Project Scheduling under Time Dependent Costs – A Branch and Bound Algorithm," Annals of Operations Research, Springer, vol. 108(1), pages 55-74, November.
    23. De Reyck, Bert & Herroelen, willy, 1998. "A branch-and-bound procedure for the resource-constrained project scheduling problem with generalized precedence relations," European Journal of Operational Research, Elsevier, vol. 111(1), pages 152-174, November.
    24. Sung, C. S. & Lim, S. K., 1994. "A project activity scheduling problem with net present value measure," International Journal of Production Economics, Elsevier, vol. 37(2-3), pages 177-187, December.
    25. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borna Dasović & Mario Galić & Uroš Klanšek, 2020. "A Survey on Integration of Optimization and Project Management Tools for Sustainable Construction Scheduling," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    2. Wuliang Peng & Jiali lin & Jingwen Zhang & Liangwei Chen, 2022. "A bi-objective hierarchical program scheduling problem and its solution based on NSGA-III," Annals of Operations Research, Springer, vol. 308(1), pages 389-414, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
    2. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
    3. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
    4. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    5. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    6. Kolisch, R. & Padman, R., 2001. "An integrated survey of deterministic project scheduling," Omega, Elsevier, vol. 29(3), pages 249-272, June.
    7. Kellenbrink, Carolin & Helber, Stefan, 2015. "Scheduling resource-constrained projects with a flexible project structure," European Journal of Operational Research, Elsevier, vol. 246(2), pages 379-391.
    8. Quintanilla, Sacramento & Pérez, Ángeles & Lino, Pilar & Valls, Vicente, 2012. "Time and work generalised precedence relationships in project scheduling with pre-emption: An application to the management of Service Centres," European Journal of Operational Research, Elsevier, vol. 219(1), pages 59-72.
    9. Nima Zoraghi & Aria Shahsavar & Babak Abbasi & Vincent Peteghem, 2017. "Multi-mode resource-constrained project scheduling problem with material ordering under bonus–penalty policies," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 49-79, April.
    10. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    11. Moukrim, Aziz & Quilliot, Alain & Toussaint, Hélène, 2015. "An effective branch-and-price algorithm for the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval Order Enumeration," European Journal of Operational Research, Elsevier, vol. 244(2), pages 360-368.
    12. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
    13. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
    14. Mika, Marek & Waligora, Grzegorz & Weglarz, Jan, 2005. "Simulated annealing and tabu search for multi-mode resource-constrained project scheduling with positive discounted cash flows and different payment models," European Journal of Operational Research, Elsevier, vol. 164(3), pages 639-668, August.
    15. Hartmann, Sönke, 2011. "Project scheduling with resource capacities and requests varying with time," Working Paper Series 01/2011, Hamburg School of Business Administration (HSBA).
    16. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
    17. Arda Turkgenci & Huseyin Guden & Mehmet Gülşen, 2021. "Decomposition based extended project scheduling for make-to-order production," Operational Research, Springer, vol. 21(2), pages 801-825, June.
    18. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustín Barrios-Sarmiento, 2022. "An adaptative bacterial foraging optimization algorithm for solving the MRCPSP with discounted cash flows," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 221-248, July.
    19. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    20. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:259:y:2017:i:1:d:10.1007_s10479-016-2336-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.