IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3507-d172949.html
   My bibliography  Save this article

Adaptive Comfort Models Applied to Existing Dwellings in Mediterranean Climate Considering Global Warming

Author

Listed:
  • Daniel Sánchez-García

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • Carlos Rubio-Bellido

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • Jesús A. Pulido-Arcas

    (Department of Building Science, University of Bio-Bio, Concepción 4030000, Chile)

  • Fco. Javier Guevara-García

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • Jacinto Canivell

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

Abstract

Comfort analysis of existing naturally ventilated buildings located in mild climates, such as the ones in the Mediterranean zones, offer room for a reduction in the present and future energy consumption. Regarding Spain, most of the present building stock was built before energy standards were mandatory, let alone considerations about global warming or adaptive comfort. In this context, this research aims at assessing adaptive thermal comfort of inhabitants of extant apartments building in the South of Spain per EN 15251:2007 and ASHRAE 55-2013. The case study is statistically representative housing built in 1973. On-site monitoring of comfort conditions and computer simulations for present conditions have been carried out, clarifying the degree of adaptive comfort at present time. After that, additional simulations for 2020, 2050, and 2080 are performed to check whether this dwelling will be able to provide comfort considering a change in climate conditions. As a result, the study concludes that levels of adaptive comfort can be considered satisfactory at present time in these dwellings, but not in the future, when discomfort associated with hot conditions will be recurrent. These results provide a hint to foresee how extant dwellings, and also dwellers, should adapt to a change in environmental conditions.

Suggested Citation

  • Daniel Sánchez-García & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Fco. Javier Guevara-García & Jacinto Canivell, 2018. "Adaptive Comfort Models Applied to Existing Dwellings in Mediterranean Climate Considering Global Warming," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3507-:d:172949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3507/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3507/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    2. Thomson, Harriet & Snell, Carolyn, 2013. "Quantifying the prevalence of fuel poverty across the European Union," Energy Policy, Elsevier, vol. 52(C), pages 563-572.
    3. Quirin Schiermeier, 2010. "The real holes in climate science," Nature, Nature, vol. 463(7279), pages 284-287, January.
    4. Samuel Domínguez & Juan J. Sendra & Angel L. León & Paula M. Esquivias, 2012. "Towards Energy Demand Reduction in Social Housing Buildings: Envelope System Optimization Strategies," Energies, MDPI, vol. 5(7), pages 1-25, July.
    5. Taleghani, Mohammad & Tenpierik, Martin & Kurvers, Stanley & van den Dobbelsteen, Andy, 2013. "A review into thermal comfort in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 201-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Reus-Netto & Pilar Mercader-Moyano & Jorge D. Czajkowski, 2019. "Methodological Approach for the Development of a Simplified Residential Building Energy Estimation in Temperate Climate," Sustainability, MDPI, vol. 11(15), pages 1-27, July.
    2. Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
    3. Hardi K. Abdullah & Halil Z. Alibaba, 2020. "Window Design of Naturally Ventilated Offices in the Mediterranean Climate in Terms of CO 2 and Thermal Comfort Performance," Sustainability, MDPI, vol. 12(2), pages 1-33, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    2. Bezerra, Paula & Cruz, Talita & Mazzone, Antonella & Lucena, André F.P. & De Cian, Enrica & Schaeffer, Roberto, 2022. "The multidimensionality of energy poverty in Brazil: A historical analysis," Energy Policy, Elsevier, vol. 171(C).
    3. Aristondo, Oihana & Onaindia, Eneritz, 2018. "Inequality of energy poverty between groups in Spain," Energy, Elsevier, vol. 153(C), pages 431-442.
    4. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    5. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    6. Caitlin Robinson & Stefan Bouzarovski & Sarah Lindley, 2018. "Underrepresenting neighbourhood vulnerabilities? The measurement of fuel poverty in England," Environment and Planning A, , vol. 50(5), pages 1109-1127, August.
    7. Corina MURAFA, 2022. "Energy poverty and the vulnerable energy consumer in Romania: A curious case of policy schizophrenia," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania - AGER, vol. 0(4(633), W), pages 57-68, Winter.
    8. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    9. Curtis, John & Pentecost, Anne, 2015. "Household fuel expenditure and residential building energy efficiency ratings in Ireland," Energy Policy, Elsevier, vol. 76(C), pages 57-65.
    10. Shengyuan Guo & Wanjiang Wang & Yihuan Zhou, 2022. "Research on Energy Saving and Economy of Old Buildings Based on Parametric Design: A Case Study of a Hospital in Linyi City, Shandong Province," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    11. Mehdi Taebnia & Sander Toomla & Lauri Leppä & Jarek Kurnitski, 2019. "Air Distribution and Air Handling Unit Configuration Effects on Energy Performance in an Air-Heated Ice Rink Arena," Energies, MDPI, vol. 12(4), pages 1-21, February.
    12. Wang, Nan & Wang, Julian & Feng, Yanxiao, 2022. "Systematic review: Acute thermal effects of artificial light in the daytime," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    14. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    15. Paloma Taltavull de la Paz & Francisco Juárez & Paloma Monllor, 2016. "Fuel Poverty: Evidence from housing perspective," Working Papers 2016/20, Institut d'Economia de Barcelona (IEB).
    16. Chih-Hong Huang & Hsin-Hua Tsai & Hung-chen Chen, 2020. "Influence of Weather Factors on Thermal Comfort in Subtropical Urban Environments," Sustainability, MDPI, vol. 12(5), pages 1-23, March.
    17. Ben Cheikh, Nidhaleddine & Ben Zaied, Younes & Nguyen, Duc Khuong, 2023. "Understanding energy poverty drivers in Europe," Energy Policy, Elsevier, vol. 183(C).
    18. Fry, Jane M. & Farrell, Lisa & Temple, Jeromey B., 2022. "Energy poverty and retirement income sources in Australia," Energy Economics, Elsevier, vol. 106(C).
    19. Igawa, Moegi & Managi, Shunsuke, 2022. "Energy poverty and income inequality: An economic analysis of 37 countries," Applied Energy, Elsevier, vol. 306(PB).
    20. Ji Hyun Lim & Geun Young Yun, 2017. "Cooling Energy Implications of Occupant Factor in Buildings under Climate Change," Sustainability, MDPI, vol. 9(11), pages 1-12, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3507-:d:172949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.