IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1498-d224575.html
   My bibliography  Save this article

Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain

Author

Listed:
  • Daniel Sánchez-García

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • David Bienvenido-Huertas

    (Department of Graphical Expression and Building Engineering, University of Seville, 41012 Seville, Spain)

  • Mónica Tristancho-Carvajal

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • Carlos Rubio-Bellido

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

Abstract

Currently, the knowledge of energy consumption in buildings of new and existing dwellings is essential to control and propose energy conservation measures. Most of the predictions of energy consumption in buildings are based on fixed values related to the internal thermal ambient and pre-established operation hypotheses, which do not reflect the dynamic use of buildings and users’ requirements. Spain is a clear example of such a situation. This study suggests the use of an adaptive thermal comfort model as a predictive method of energy consumption in the internal thermal ambient, as well as several operation hypotheses, and both conditions are combined in a simulation model: the Adaptive Comfort Control Implemented Model (ACCIM). The behavior of ACCIM is studied in a representative case of the residential building stock, which is located in three climate zones with different characteristics (warm, cold, and mild climates). The analyses were conducted both in current and future scenarios with the aim of knowing the advantages and limitations in each climate zone. The results show that the average consumption of the current, 2050, and 2080 scenarios decreased between 23% and 46% in warm climates, between 19% and 25% in mild climates, and between 10% and 29% in cold climates by using such a predictive method. It is also shown that this method is more resilient to climate change than the current standard. This research can be a starting point to understand users’ climate adaptation to predict energy consumption.

Suggested Citation

  • Daniel Sánchez-García & David Bienvenido-Huertas & Mónica Tristancho-Carvajal & Carlos Rubio-Bellido, 2019. "Adaptive Comfort Control Implemented Model (ACCIM) for Energy Consumption Predictions in Dwellings under Current and Future Climate Conditions: A Case Study Located in Spain," Energies, MDPI, vol. 12(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1498-:d:224575
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Isaac, Morna & van Vuuren, Detlef P., 2009. "Modeling global residential sector energy demand for heating and air conditioning in the context of climate change," Energy Policy, Elsevier, vol. 37(2), pages 507-521, February.
    2. Wan, Kevin K.W. & Li, Danny H.W. & Lam, Joseph C., 2011. "Assessment of climate change impact on building energy use and mitigation measures in subtropical climates," Energy, Elsevier, vol. 36(3), pages 1404-1414.
    3. Ren, Zhengen & Chen, Dong, 2018. "Modelling study of the impact of thermal comfort criteria on housing energy use in Australia," Applied Energy, Elsevier, vol. 210(C), pages 152-166.
    4. Bienvenido-Huertas, David & Moyano, Juan & Rodríguez-Jiménez, Carlos E. & Marín, David, 2019. "Applying an artificial neural network to assess thermal transmittance in walls by means of the thermometric method," Applied Energy, Elsevier, vol. 233, pages 1-14.
    5. Rubio-Bellido, Carlos & Pérez-Fargallo, Alexis & Pulido-Arcas, Jesús A., 2016. "Optimization of annual energy demand in office buildings under the influence of climate change in Chile," Energy, Elsevier, vol. 114(C), pages 569-585.
    6. David Bienvenido-Huertas & Carlos Rubio-Bellido & Juan Luis Pérez-Ordóñez & Fernando Martínez-Abella, 2019. "Estimating Adaptive Setpoint Temperatures Using Weather Stations," Energies, MDPI, vol. 12(7), pages 1-47, March.
    7. Daniel Sánchez-García & Carlos Rubio-Bellido & Jesús A. Pulido-Arcas & Fco. Javier Guevara-García & Jacinto Canivell, 2018. "Adaptive Comfort Models Applied to Existing Dwellings in Mediterranean Climate Considering Global Warming," Sustainability, MDPI, vol. 10(10), pages 1-21, September.
    8. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    9. Kwon Sook Park & Mi Jeong Kim, 2017. "Energy Demand Reduction in the Residential Building Sector: A Case Study of Korea," Energies, MDPI, vol. 10(10), pages 1-11, September.
    10. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bienvenido-Huertas, David & Rubio-Bellido, Carlos & Solís-Guzmán, Jaime & Oliveira, Miguel José, 2020. "Experimental characterisation of the periodic thermal properties of walls using artificial intelligence," Energy, Elsevier, vol. 203(C).
    2. David Bienvenido-Huertas & Miguel Oliveira & Carlos Rubio-Bellido & David Marín, 2019. "A Comparative Analysis of the International Regulation of Thermal Properties in Building Envelope," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    3. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos & Pulido-Arcas, Jesús A., 2021. "Applying the mixed-mode with an adaptive approach to reduce the energy poverty in social dwellings: The case of Spain," Energy, Elsevier, vol. 237(C).
    4. Pilar Mercader-Moyano & Manuel Ramos-Martín, 2020. "Comprehensive Sustainability Assessment of Regenerative Actions on the Thermal Envelope of Obsolete Buildings under Climate Change Perspective," Sustainability, MDPI, vol. 12(14), pages 1-40, July.
    5. Mª Desirée Alba-Rodríguez & Carlos Rubio-Bellido & Mónica Tristancho-Carvajal & Raúl Castaño-Rosa & Madelyn Marrero, 2021. "Present and Future Energy Poverty, a Holistic Approach: A Case Study in Seville, Spain," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    6. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bienvenido-Huertas, David & Sánchez-García, Daniel & Rubio-Bellido, Carlos, 2020. "Comparison of energy conservation measures considering adaptive thermal comfort and climate change in existing Mediterranean dwellings," Energy, Elsevier, vol. 190(C).
    2. David Bienvenido-Huertas, 2020. "Analysis of the Impact of the Use Profile of HVAC Systems Established by the Spanish Standard to Assess Residential Building Energy Performance," Sustainability, MDPI, vol. 12(17), pages 1-19, September.
    3. Marta Videras Rodríguez & Antonio Sánchez Cordero & Sergio Gómez Melgar & José Manuel Andújar Márquez, 2020. "Impact of Global Warming in Subtropical Climate Buildings: Future Trends and Mitigation Strategies," Energies, MDPI, vol. 13(23), pages 1-22, November.
    4. David Bienvenido-Huertas & Juan Antonio Fernández Quiñones & Juan Moyano & Carlos E. Rodríguez-Jiménez, 2018. "Patents Analysis of Thermal Bridges in Slab Fronts and Their Effect on Energy Demand," Energies, MDPI, vol. 11(9), pages 1-18, August.
    5. Yuanzheng Li & Wenjing Wang & Yating Wang & Yashu Xin & Tian He & Guosong Zhao, 2020. "A Review of Studies Involving the Effects of Climate Change on the Energy Consumption for Building Heating and Cooling," IJERPH, MDPI, vol. 18(1), pages 1-18, December.
    6. David Bienvenido-Huertas, 2020. "Assessing the Environmental Impact of Thermal Transmittance Tests Performed in Façades of Existing Buildings: The Case of Spain," Sustainability, MDPI, vol. 12(15), pages 1-18, August.
    7. Pérez-Andreu, Víctor & Aparicio-Fernández, Carolina & Martínez-Ibernón, Ana & Vivancos, José-Luis, 2018. "Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate," Energy, Elsevier, vol. 165(PA), pages 63-74.
    8. Dirks, James A. & Gorrissen, Willy J. & Hathaway, John H. & Skorski, Daniel C. & Scott, Michael J. & Pulsipher, Trenton C. & Huang, Maoyi & Liu, Ying & Rice, Jennie S., 2015. "Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach," Energy, Elsevier, vol. 79(C), pages 20-32.
    9. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Víctor Echarri-Iribarren & Cristina Sotos-Solano & Almudena Espinosa-Fernández & Raúl Prado-Govea, 2019. "The Passivhaus Standard in the Spanish Mediterranean: Evaluation of a House’s Thermal Behaviour of Enclosures and Airtightness," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    11. David Bienvenido-Huertas & Miguel Oliveira & Carlos Rubio-Bellido & David Marín, 2019. "A Comparative Analysis of the International Regulation of Thermal Properties in Building Envelope," Sustainability, MDPI, vol. 11(20), pages 1-30, October.
    12. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2017. "Energy use implications of different design strategies for multi-storey residential buildings under future climates," Energy, Elsevier, vol. 138(C), pages 846-860.
    13. Lucía Pereira-Ruchansky & Alexis Pérez-Fargallo, 2020. "Integrated Analysis of Energy Saving and Thermal Comfort of Retrofits in Social Housing under Climate Change Influence in Uruguay," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    14. De Rosa, Mattia & Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2014. "Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach," Applied Energy, Elsevier, vol. 128(C), pages 217-229.
    15. Fu, Feng & Pan, Lingying & Ma, Linwei & Li, Zheng, 2013. "A simplified method to estimate the energy-saving potentials of frequent construction and demolition process in China," Energy, Elsevier, vol. 49(C), pages 316-322.
    16. Nishijima, Daisuke, 2017. "The role of technology, product lifetime, and energy efficiency in climate mitigation: A case study of air conditioners in Japan," Energy Policy, Elsevier, vol. 104(C), pages 340-347.
    17. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    18. Dereje S. Ayou & Valerie Eveloy, 2020. "Integration of Municipal Air-Conditioning, Power, and Gas Supplies Using an LNG Cold Exergy-Assisted Kalina Cycle System," Energies, MDPI, vol. 13(18), pages 1-31, September.
    19. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    20. François Cohen & Matthieu Glachant & Magnus Söderberg, 2017. "The cost of adapting to climate change: evidence from the US residential sector," Working Papers hal-01695171, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1498-:d:224575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.