IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i1p10-d200288.html
   My bibliography  Save this article

Risk Model Validation: An Intraday VaR and ES Approach Using the Multiplicative Component GARCH

Author

Listed:
  • Ravi Summinga-Sonagadu

    (Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius)

  • Jason Narsoo

    (Department of Economics and Statistics, University of Mauritius, Réduit 80837, Mauritius)

Abstract

In this paper, we employ 99% intraday value-at-risk (VaR) and intraday expected shortfall (ES) as risk metrics to assess the competency of the Multiplicative Component Generalised Autoregressive Heteroskedasticity (MC-GARCH) models based on the 1-min EUR/USD exchange rate returns. Five distributional assumptions for the innovation process are used to analyse their effects on the modelling and forecasting performance. The high-frequency volatility models were validated in terms of in-sample fit based on various statistical and graphical tests. A more rigorous validation procedure involves testing the predictive power of the models. Therefore, three backtesting procedures were used for the VaR, namely, the Kupiec’s test, a duration-based backtest, and an asymmetric VaR loss function. Similarly, three backtests were employed for the ES: a regression-based backtesting procedure, the Exceedance Residual backtest and the V-Tests. The validation results show that non-normal distributions are best suited for both model fitting and forecasting. The MC-GARCH(1,1) model under the Generalised Error Distribution (GED) innovation assumption gave the best fit to the intraday data and gave the best results for the ES forecasts. However, the asymmetric Skewed Student’s-t distribution for the innovation process provided the best results for the VaR forecasts. This paper presents the results of the first empirical study (to the best of the authors’ knowledge) in: (1) forecasting the intraday Expected Shortfall (ES) under different distributional assumptions for the MC-GARCH model; (2) assessing the MC-GARCH model under the Generalised Error Distribution (GED) innovation; (3) evaluating and ranking the VaR predictability of the MC-GARCH models using an asymmetric loss function.

Suggested Citation

  • Ravi Summinga-Sonagadu & Jason Narsoo, 2019. "Risk Model Validation: An Intraday VaR and ES Approach Using the Multiplicative Component GARCH," Risks, MDPI, vol. 7(1), pages 1-23, January.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:10-:d:200288
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/1/10/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/1/10/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    2. Engle, Robert F., 1982. "A general approach to lagrange multiplier model diagnostics," Journal of Econometrics, Elsevier, vol. 20(1), pages 83-104, October.
    3. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    4. Sebastian Bayer & Timo Dimitriadis, 2018. "Regression Based Expected Shortfall Backtesting," Papers 1801.04112, arXiv.org, revised Sep 2019.
    5. Christopher L. Culp & Merton H. Miller & Andrea M. P. Neves, 1998. "Value At Risk: Uses And Abuses," Journal of Applied Corporate Finance, Morgan Stanley, vol. 10(4), pages 26-38, January.
    6. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    7. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    8. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    9. Peter Christoffersen, 2004. "Backtesting Value-at-Risk: A Duration-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 84-108.
    10. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    11. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    12. Andersen, Torben G. & Bollerslev, Tim & Lange, Steve, 1999. "Forecasting financial market volatility: Sample frequency vis-a-vis forecast horizon," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 457-477, December.
    13. Xundi Diao & Bin Tong, 2015. "Forecasting intraday volatility and VaR using multiplicative component GARCH model," Applied Economics Letters, Taylor & Francis Journals, vol. 22(18), pages 1457-1464, December.
    14. Bollerslev, Tim, 1987. "A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 542-547, August.
    15. Mauro Bernardi & Leopoldo Catania & Lea Petrella, 2014. "Are news important to predict large losses?," Papers 1410.6898, arXiv.org, revised Oct 2014.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    2. Wei Kuang, 2022. "Oil tail-risk forecasts: from financial crisis to COVID-19," Risk Management, Palgrave Macmillan, vol. 24(4), pages 420-460, December.
    3. Vica Tendenan & Richard Gerlach & Chao Wang, 2020. "Tail risk forecasting using Bayesian realized EGARCH models," Papers 2008.05147, arXiv.org, revised Aug 2020.
    4. Huang, Yirong & Luo, Yi, 2024. "Forecasting conditional volatility based on hybrid GARCH-type models with long memory, regime switching, leverage effect and heavy-tail: Further evidence from equity market," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    5. Stavros Degiannakis & Evdokia Xekalaki, 2007. "Assessing the performance of a prediction error criterion model selection algorithm in the context of ARCH models," Applied Financial Economics, Taylor & Francis Journals, vol. 17(2), pages 149-171.
    6. Bali, Turan G. & Weinbaum, David, 2007. "A conditional extreme value volatility estimator based on high-frequency returns," Journal of Economic Dynamics and Control, Elsevier, vol. 31(2), pages 361-397, February.
    7. Chu, Carlin C.F. & Lam, K.P., 2011. "Modeling intraday volatility: A new consideration," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 21(3), pages 388-418, July.
    8. Aditya Banerjee & Samit Paul, 2024. "Idiosyncrasies of Intraday Risk in Emerging and Developed Markets: Efficacy of the MCS-GARCH Model and Extreme Value Theory," Global Business Review, International Management Institute, vol. 25(2), pages 468-490, April.
    9. Krzysztof Echaust & Małgorzata Just, 2021. "Tail Dependence between Crude Oil Volatility Index and WTI Oil Price Movements during the COVID-19 Pandemic," Energies, MDPI, vol. 14(14), pages 1-21, July.
    10. Leopoldo Catania & Nima Nonejad, 2016. "Density Forecasts and the Leverage Effect: Some Evidence from Observation and Parameter-Driven Volatility Models," Papers 1605.00230, arXiv.org, revised Nov 2016.
    11. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    12. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    13. Herrera, R. & Clements, A.E., 2018. "Point process models for extreme returns: Harnessing implied volatility," Journal of Banking & Finance, Elsevier, vol. 88(C), pages 161-175.
    14. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    15. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2005. "Volatility forecasting," CFS Working Paper Series 2005/08, Center for Financial Studies (CFS).
    16. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    17. Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
    18. Tian, Shuairu & Hamori, Shigeyuki, 2015. "Modeling interest rate volatility: A Realized GARCH approach," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 158-171.
    19. Bei, Shuhua & Yang, Aijun & Pei, Haotian & Si, Xiaoli, 2023. "Price Risk Analysis using GARCH Family Models: Evidence from Shanghai Crude Oil Futures Market," Economic Modelling, Elsevier, vol. 125(C).
    20. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:10-:d:200288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.