IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p524-d509452.html
   My bibliography  Save this article

Cox Processes Associated with Spatial Copula Observed through Stratified Sampling

Author

Listed:
  • Walguen Oscar

    (Department of Mathematics and Computer Sciences, Université des Antilles, 97157 Pointe-à-Pitre, France
    Université d’Etat d’Haiti, HT6110 Port-au-Prince, Haiti)

  • Jean Vaillant

    (Department of Mathematics and Computer Sciences, Université des Antilles, 97157 Pointe-à-Pitre, France)

Abstract

Cox processes, also called doubly stochastic Poisson processes, are used for describing phenomena for which overdispersion exists, as well as Poisson properties conditional on environmental effects. In this paper, we consider situations where spatial count data are not available for the whole study area but only for sampling units within identified strata. Moreover, we introduce a model of spatial dependency for environmental effects based on a Gaussian copula and gamma-distributed margins. The strength of dependency between spatial effects is related with the distance between stratum centers. Sampling properties are presented taking into account the spatial random field of covariates. Likelihood and Bayesian inference approaches are proposed to estimate the effect parameters and the covariate link function parameters. These techniques are illustrated using Black Leaf Streak Disease (BLSD) data collected in Martinique island.

Suggested Citation

  • Walguen Oscar & Jean Vaillant, 2021. "Cox Processes Associated with Spatial Copula Observed through Stratified Sampling," Mathematics, MDPI, vol. 9(5), pages 1-13, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:524-:d:509452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/524/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/524/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karlis, Dimitris, 2005. "EM Algorithm for Mixed Poisson and Other Discrete Distributions," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 3-24, May.
    2. Peter Xue‐Kun Song, 2000. "Multivariate Dispersion Models Generated From Gaussian Copula," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 27(2), pages 305-320, June.
    3. De Oliveira, Victor, 2013. "Hierarchical Poisson models for spatial count data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 393-408.
    4. Li, Zhongping & Cui, Lirong & Chen, Jianhui, 2018. "Traffic accident modelling via self-exciting point processes," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 312-320.
    5. Roger D. Peng & Frederic Paik Schoenberg & James A. Woods, 2005. "A Space-Time Conditional Intensity Model for Evaluating a Wildfire Hazard Index," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 26-35, March.
    6. Sain, Stephan R. & Cressie, Noel, 2007. "A spatial model for multivariate lattice data," Journal of Econometrics, Elsevier, vol. 140(1), pages 226-259, September.
    7. Jean Vaillant & Gavino Puggioni & Lance A. Waller & Jean Daugrois, 2011. "A spatio‐temporal analysis of the spread of sugarcane yellow leaf virus," Journal of Time Series Analysis, Wiley Blackwell, vol. 32, pages 396-406, July.
    8. Lee, Duncan, 2013. "CARBayes: An R Package for Bayesian Spatial Modeling with Conditional Autoregressive Priors," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i13).
    9. Jesper Møller & Mohammad Ghorbani & Ege Rubak, 2016. "Mechanistic spatio-temporal point process models for marked point processes, with a view to forest stand data," Biometrics, The International Biometric Society, vol. 72(3), pages 687-696, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao Li & Michele Guindani & Chaan S. Ng & Brian P. Hobbs, 2021. "A Bayesian nonparametric model for textural pattern heterogeneity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(2), pages 459-480, March.
    2. Nikoline N. Knudsen & Jörg Schullehner & Birgitte Hansen & Lisbeth F. Jørgensen & Søren M. Kristiansen & Denitza D. Voutchkova & Thomas A. Gerds & Per K. Andersen & Kristine Bihrmann & Morten Grønbæk , 2017. "Lithium in Drinking Water and Incidence of Suicide: A Nationwide Individual-Level Cohort Study with 22 Years of Follow-Up," IJERPH, MDPI, vol. 14(6), pages 1-13, June.
    3. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    4. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2016. "Copula--based Specification of vector MEMs," Papers 1604.01338, arXiv.org.
    5. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    6. Philipp Arbenz, 2013. "Bayesian Copulae Distributions, with Application to Operational Risk Management—Some Comments," Methodology and Computing in Applied Probability, Springer, vol. 15(1), pages 105-108, March.
    7. Noel Cressie & Andrew Zammit-Mangion, 2016. "Multivariate spatial covariance models: a conditional approach," Biometrika, Biometrika Trust, vol. 103(4), pages 915-935.
    8. Azam, Kazim, 2014. "Effects of Marginal Specifcations on Copula Estimation," Economic Research Papers 270230, University of Warwick - Department of Economics.
    9. Kimberly S. Weems & Paul J. Smith, 2018. "Assessing the robustness of estimators when fitting Poisson inverse Gaussian models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(8), pages 985-1004, November.
    10. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    11. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    12. Chien-Hsun Chang & Frederic Schoenberg, 2011. "Testing separability in marked multidimensional point processes with covariates," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(6), pages 1103-1122, December.
    13. Arnab Bhattacharjee & Eduardo Castro & Taps Maiti & João Marques, 2014. "Endogenous spatial structure and delineation of submarkets: A new framework with application to housing markets," SEEC Discussion Papers 1403, Spatial Economics and Econometrics Centre, Heriot Watt University.
    14. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    15. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    16. Frazier, David T. & Renault, Eric, 2017. "Efficient two-step estimation via targeting," Journal of Econometrics, Elsevier, vol. 201(2), pages 212-227.
    17. Sebastian Meyer & Johannes Elias & Michael Höhle, 2012. "A Space–Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence," Biometrics, The International Biometric Society, vol. 68(2), pages 607-616, June.
    18. repec:esx:essedp:767 is not listed on IDEAS
    19. Chen, Roger B., 2018. "Models of count with endogenous choices," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 862-875.
    20. Minji Lee & Sun Ju Chung & Youngjo Lee & Sera Park & Jun-Gun Kwon & Dai Jin Kim & Donghwan Lee & Jung-Seok Choi, 2020. "Investigation of Correlated Internet and Smartphone Addiction in Adolescents: Copula Regression Analysis," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    21. Zichen Ma & Shannon W. Davis & Yen‐Yi Ho, 2023. "Flexible copula model for integrating correlated multi‐omics data from single‐cell experiments," Biometrics, The International Biometric Society, vol. 79(2), pages 1559-1572, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:524-:d:509452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.