IDEAS home Printed from https://ideas.repec.org/a/taf/jriskr/v13y2010i5p653-667.html
   My bibliography  Save this article

Translational benchmark risk analysis

Author

Listed:
  • Walter W. Piegorsch

Abstract

Translational development -- in the sense of translating a mature methodology from one area of application to another, evolving area -- is discussed for the use of benchmark doses in quantitative risk assessment. Illustrations are presented with traditional applications of the benchmark paradigm in biology and toxicology, and also with risk endpoints that differ from traditional toxicological archetypes. It is seen that the benchmark approach can apply to a diverse spectrum of risk management settings. This suggests a promising future for this important risk-analytic tool. Extensions of the method to a wider variety of applications represent a significant opportunity for enhancing environmental, biomedical, industrial, and socio-economic risk assessments.

Suggested Citation

  • Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
  • Handle: RePEc:taf:jriskr:v:13:y:2010:i:5:p:653-667
    DOI: 10.1080/13669870903551662
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/13669870903551662
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13669870903551662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehdi Razzaghi & Ralph Kodell, 2004. "Quantitative Risk Assessment for Developmental Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1673-1681, December.
    2. Morales, Knashawn H. & Ibrahim, Joseph G. & Chen, Chien-Jen & Ryan, Louise M., 2006. "Bayesian Model Averaging With Applications to Benchmark Dose Estimation for Arsenic in Drinking Water," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 9-17, March.
    3. A. J. Bailer & L. T. Stayner & R. J. Smith & E. D. Kuempel & M. M. Prince, 1997. "Estimating Benchmark Concentrations and Other Noncancer Endpoints in Epidemiology Studies," Risk Analysis, John Wiley & Sons, vol. 17(6), pages 771-780, December.
    4. Roger D. Peng & Frederic Paik Schoenberg & James A. Woods, 2005. "A Space-Time Conditional Intensity Model for Evaluating a Wildfire Hazard Index," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 26-35, March.
    5. Walter W. Piegorsch & R. Webster West & Wei Pan & Ralph L. Kodell, 2005. "Low dose risk estimation via simultaneous statistical inferences," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 245-258, January.
    6. Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
    7. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    8. A. John Bailer & Robert B. Noble & Matthew W. Wheeler, 2005. "Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 291-299, April.
    9. Cynthia B. Van Landingham & Bruce C. Allen & Annette M. Shipp & Kenny S. Crump, 2001. "Comparison of the EU T25 Single Point Estimate Method with Benchmark Dose Response Modeling for Estimating Potency of Carcinogens," Risk Analysis, John Wiley & Sons, vol. 21(4), pages 641-656, August.
    10. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    11. Walter W. Piegorsch & Susan L. Cutter & Frank Hardisty, 2007. "Benchmark Analysis for Quantifying Urban Vulnerability to Terrorist Incidents," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1411-1425, December.
    12. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    13. Obaid M. Al-Saidy & Walter W. Piegorsch & R. Webster West & Daniela K. Nitcheva, 2003. "Confidence Bands for Low-Dose Risk Estimation with Quantal Response Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1056-1062, December.
    14. Ralph L. Kodell & Ronnie W. West, 1993. "Upper Confidence Limits on Excess Risk for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 177-182, April.
    15. Howard Kunreuther, 2002. "Risk Analysis and Risk Management in an Uncertain World," Risk Analysis, John Wiley & Sons, vol. 22(4), pages 655-664, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    2. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Jingyu Liu & Walter W. Piegorsch & A. Grant Schissler & Susan L. Cutter, 2018. "Autologistic models for benchmark risk or vulnerability assessment of urban terrorism outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 803-823, June.
    5. Walter W. Piegorsch & Susan L. Cutter & Frank Hardisty, 2007. "Benchmark Analysis for Quantifying Urban Vulnerability to Terrorist Incidents," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1411-1425, December.
    6. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    7. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    8. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    9. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    10. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    11. Matthew W. Wheeler & A. John Bailer, 2007. "Properties of Model‐Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 659-670, June.
    12. Lizhen Lin & Walter W. Piegorsch & Rabi Bhattacharya, 2015. "Nonparametric Benchmark Dose Estimation with Continuous Dose-Response Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 713-731, September.
    13. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    14. Esben Budtz‐Jørgensen & David Bellinger & Bruce Lanphear & Philippe Grandjean & on behalf of the International Pooled Lead Study Investigators, 2013. "An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 450-461, March.
    15. Sanyu Zhou, 2017. "One-sided hyperbolic simultaneous confidence bands for multiple and polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 187-200, February.
    16. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    17. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    18. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    19. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    20. Gupta, Ramesh C. & Wang, Na, 2009. "Estimation of extra risk and benchmark dose in dose–response models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2036-2050.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jriskr:v:13:y:2010:i:5:p:653-667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RJRR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.