IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v34y2014i1p101-120.html
   My bibliography  Save this article

Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data

Author

Listed:
  • Kan Shao
  • Jeffrey S. Gift

Abstract

The benchmark dose (BMD) approach has gained acceptance as a valuable risk assessment tool, but risk assessors still face significant challenges associated with selecting an appropriate BMD/BMDL estimate from the results of a set of acceptable dose‐response models. Current approaches do not explicitly address model uncertainty, and there is an existing need to more fully inform health risk assessors in this regard. In this study, a Bayesian model averaging (BMA) BMD estimation method taking model uncertainty into account is proposed as an alternative to current BMD estimation approaches for continuous data. Using the “hybrid” method proposed by Crump, two strategies of BMA, including both “maximum likelihood estimation based” and “Markov Chain Monte Carlo based” methods, are first applied as a demonstration to calculate model averaged BMD estimates from real continuous dose‐response data. The outcomes from the example data sets examined suggest that the BMA BMD estimates have higher reliability than the estimates from the individual models with highest posterior weight in terms of higher BMDL and smaller 90th percentile intervals. In addition, a simulation study is performed to evaluate the accuracy of the BMA BMD estimator. The results from the simulation study recommend that the BMA BMD estimates have smaller bias than the BMDs selected using other criteria. To further validate the BMA method, some technical issues, including the selection of models and the use of bootstrap methods for BMDL derivation, need further investigation over a more extensive, representative set of dose‐response data.

Suggested Citation

  • Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
  • Handle: RePEc:wly:riskan:v:34:y:2014:i:1:p:101-120
    DOI: 10.1111/risa.12078
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12078
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    2. A. John Bailer & Robert B. Noble & Matthew W. Wheeler, 2005. "Model Uncertainty and Risk Estimation for Experimental Studies of Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 291-299, April.
    3. R. Webster West & Ralph L. Kodell, 1999. "A Comparison of Methods of Benchmark‐Dose Estimation for Continuous Response Data," Risk Analysis, John Wiley & Sons, vol. 19(3), pages 453-459, June.
    4. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    5. Morales, Knashawn H. & Ibrahim, Joseph G. & Chen, Chien-Jen & Ryan, Louise M., 2006. "Bayesian Model Averaging With Applications to Benchmark Dose Estimation for Arsenic in Drinking Water," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 9-17, March.
    6. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    7. Montgomery, Jacob M. & Nyhan, Brendan, 2010. "Bayesian Model Averaging: Theoretical Developments and Practical Applications," Political Analysis, Cambridge University Press, vol. 18(2), pages 245-270, April.
    8. Ralph L. Kodell & Ronnie W. West, 1993. "Upper Confidence Limits on Excess Risk for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 177-182, April.
    9. W. Slob & M. N. Pieters, 1998. "A Probabilistic Approach for Deriving Acceptable Human Intake Limits and Human Health Risks from Toxicological Studies: General Framework," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 787-798, December.
    10. Hojin Moon & Hyun‐Joo Kim & James J. Chen & Ralph L. Kodell, 2005. "Model Averaging Using the Kullback Information Criterion in Estimating Effective Doses for Microbial Infection and Illness," Risk Analysis, John Wiley & Sons, vol. 25(5), pages 1147-1159, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthew W. Wheeler & Jose Cortiñas Abrahantes & Marc Aerts & Jeffery S. Gift & Jerry Allen Davis, 2022. "Continuous model averaging for benchmark dose analysis: Averaging over distributional forms," Environmetrics, John Wiley & Sons, Ltd., vol. 33(5), August.
    2. Jin‐Hua Chen & Chun‐Shu Chen & Meng‐Fan Huang & Hung‐Chih Lin, 2016. "Estimating the Probability of Rare Events Occurring Using a Local Model Averaging," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1855-1870, October.
    3. Marc Aerts & Matthew W. Wheeler & José Cortiñas Abrahantes, 2020. "An extended and unified modeling framework for benchmark dose estimation for both continuous and binary data," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    4. Kan Shao & Bruce C. Allen & Matthew W. Wheeler, 2017. "Bayesian Hierarchical Structure for Quantifying Population Variability to Inform Probabilistic Health Risk Assessments," Risk Analysis, John Wiley & Sons, vol. 37(10), pages 1865-1878, October.
    5. Signe M. Jensen & Christian Ritz, 2015. "Simultaneous Inference for Model Averaging of Derived Parameters," Risk Analysis, John Wiley & Sons, vol. 35(1), pages 68-76, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    2. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.
    5. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    6. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    7. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    8. Matthew W. Wheeler & A. John Bailer, 2007. "Properties of Model‐Averaged BMDLs: A Study of Model Averaging in Dichotomous Response Risk Estimation," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 659-670, June.
    9. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    10. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    11. Robert B. Noble & A. John Bailer & Robert Park, 2009. "Model‐Averaged Benchmark Concentration Estimates for Continuous Response Data Arising from Epidemiological Studies," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 558-564, April.
    12. Esben Budtz‐Jørgensen & David Bellinger & Bruce Lanphear & Philippe Grandjean & on behalf of the International Pooled Lead Study Investigators, 2013. "An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 450-461, March.
    13. Hilko Van Der Voet & Wout Slob, 2007. "Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 351-371, April.
    14. Kristi Kuljus & Dietrich Von Rosen & Salomon Sand & Katarina Victorin, 2006. "Comparing Experimental Designs for Benchmark Dose Calculations for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 1031-1043, August.
    15. Edsel A. Peña & Wensong Wu & Walter Piegorsch & Ronald W. West & LingLing An, 2017. "Model Selection and Estimation with Quantal‐Response Data in Benchmark Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 716-732, April.
    16. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    17. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    18. Matteo Goldoni & Maria Vittoria Vettori & Rossella Alinovi & Andrea Caglieri & Sandra Ceccatelli & Antonio Mutti, 2003. "Models of Neurotoxicity: Extrapolation of Benchmark Doses in Vitro," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 505-514, June.
    19. Chu‐Chih Chen & James J. Chen, 2014. "Benchmark Dose Calculation for Ordered Categorical Responses," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1435-1447, August.
    20. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:34:y:2014:i:1:p:101-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.