IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v23y2003i3p505-514.html
   My bibliography  Save this article

Models of Neurotoxicity: Extrapolation of Benchmark Doses in Vitro

Author

Listed:
  • Matteo Goldoni
  • Maria Vittoria Vettori
  • Rossella Alinovi
  • Andrea Caglieri
  • Sandra Ceccatelli
  • Antonio Mutti

Abstract

In risk assessment, no observed exposure level (NOAEL) and benchmark dose (BMD) are usually derived either from epidemiological studies in humans or from animal experiments. In many in vitro studies, concentration‐effect/response curves have been analyzed using different mathematical models finalized to the identification of EC50. In the present article, we propose a model to fit dose‐response curves in vitro. The BMD approach has been used to compare the cell viability (MTT assay) of different rat (C6 and PC12, glial and neuronal, respectively) and human cell lines (D384 and SK‐N‐MC, glial and neuronal, respectively) after 24‐hour exposure to the following neurotoxic substances: manganese chloride (MnCl2), methyl‐mercury (Me‐Hg), and the enantiomers of styrene oxide (SO). For all rat and human cell lines, the potency of the examined compounds was: MnCl2

Suggested Citation

  • Matteo Goldoni & Maria Vittoria Vettori & Rossella Alinovi & Andrea Caglieri & Sandra Ceccatelli & Antonio Mutti, 2003. "Models of Neurotoxicity: Extrapolation of Benchmark Doses in Vitro," Risk Analysis, John Wiley & Sons, vol. 23(3), pages 505-514, June.
  • Handle: RePEc:wly:riskan:v:23:y:2003:i:3:p:505-514
    DOI: 10.1111/1539-6924.00331
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1539-6924.00331
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1539-6924.00331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    2. R. Webster West & Ralph L. Kodell, 1999. "A Comparison of Methods of Benchmark‐Dose Estimation for Continuous Response Data," Risk Analysis, John Wiley & Sons, vol. 19(3), pages 453-459, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    2. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    3. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.
    4. Katsuyuki Murata & Esben Budtz‐Jørgensen & Philippe Grandjean, 2002. "Benchmark Dose Calculations for Methylmercury‐Associated Delays on Evoked Potential Latencies in Two Cohorts of Children," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 465-474, June.
    5. Zi-Fan Yu & Paul J. Catalano, 2005. "Quantitative Risk Assessment for Multivariate Continuous Outcomes with Application to Neurotoxicology: The Bivariate Case," Biometrics, The International Biometric Society, vol. 61(3), pages 757-766, September.
    6. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    7. Kenny S. Grump & Tord Kjellström & Annette M. Shipp & Abraham Silvers & Alistair Stewart, 1998. "Influence of Prenatal Mercury Exposure Upon Scholastic and Psychologica Test Performance: Benchmark Analysis of a New Zealand Cohort," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 701-713, December.
    8. Maria A. Sans‐Fuentes & Walter W. Piegorsch, 2021. "Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    9. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    10. Kristi Kuljus & Dietrich Von Rosen & Salomon Sand & Katarina Victorin, 2006. "Comparing Experimental Designs for Benchmark Dose Calculations for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 1031-1043, August.
    11. Steven B. Kim & Ralph L. Kodell & Hojin Moon, 2014. "A Diversity Index for Model Space Selection in the Estimation of Benchmark and Infectious Doses via Model Averaging," Risk Analysis, John Wiley & Sons, vol. 34(3), pages 453-464, March.
    12. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    13. Matthew W. Wheeler & A. John Bailer & Tarah Cole & Robert M. Park & Kan Shao, 2017. "Bayesian Quantile Impairment Threshold Benchmark Dose Estimation for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 37(11), pages 2107-2118, November.
    14. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    15. Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
    16. Hoda Izadi & Jean E. Grundy & Ranjan Bose, 2012. "Evaluation of the Benchmark Dose for Point of Departure Determination for a Variety of Chemical Classes in Applied Regulatory Settings," Risk Analysis, John Wiley & Sons, vol. 32(5), pages 830-835, May.
    17. Keiko Kubo & Kazuhiro Nogawa & Teruhiko Kido & Muneko Nishijo & Hideaki Nakagawa & Yasushi Suwazono, 2017. "Estimation of Benchmark Dose of Lifetime Cadmium Intake for Adverse Renal Effects Using Hybrid Approach in Inhabitants of an Environmentally Exposed River Basin in Japan," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 20-26, January.
    18. David W. Gaylor & William Slikker, 2004. "Role of the Standard Deviation in the Estimation of Benchmark Doses with Continuous Data," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1683-1687, December.
    19. Harvey J. Clewell & Gregory A. Lawrence & Donald B. Calne & Kenny S. Crump, 2003. "Determination of an Occupational Exposure Guideline for Manganese Using the Benchmark Method," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1031-1046, October.
    20. Chu‐Chih Chen & James J. Chen, 2014. "Benchmark Dose Calculation for Ordered Categorical Responses," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1435-1447, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:23:y:2003:i:3:p:505-514. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.