IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v24y2004i1p31-40.html
   My bibliography  Save this article

A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose

Author

Listed:
  • Mirjam Moerbeek
  • Aldert H. Piersma
  • Wout Slob

Abstract

Various methods exist to calculate confidence intervals for the benchmark dose in risk analysis. This study compares the performance of three such methods in fitting nonlinear dose‐response models: the delta method, the likelihood‐ratio method, and the bootstrap method. A data set from a developmental toxicity test with continuous, ordinal, and quantal dose‐response data is used for the comparison of these methods. Nonlinear dose‐response models, with various shapes, were fitted to these data. The results indicate that a few thousand runs are generally needed to get stable confidence limits when using the bootstrap method. Further, the bootstrap and the likelihood‐ratio method were found to give fairly similar results. The delta method, however, resulted in some cases in different (usually narrower) intervals, and appears unreliable for nonlinear dose‐response models. Since the bootstrap method is more time consuming than the likelihood‐ratio method, the latter is more attractive for routine dose‐response analysis. In the context of a probabilistic risk assessment the bootstrap method has the advantage that it directly links to Monte Carlo analysis.

Suggested Citation

  • Mirjam Moerbeek & Aldert H. Piersma & Wout Slob, 2004. "A Comparison of Three Methods for Calculating Confidence Intervals for the Benchmark Dose," Risk Analysis, John Wiley & Sons, vol. 24(1), pages 31-40, February.
  • Handle: RePEc:wly:riskan:v:24:y:2004:i:1:p:31-40
    DOI: 10.1111/j.0272-4332.2004.00409.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.0272-4332.2004.00409.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.0272-4332.2004.00409.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kenny S. Crump, 1995. "Calculation of Benchmark Doses from Continuous Data," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 79-89, February.
    2. A. John Bailer & Randall J. Smith, 1994. "Estimating Upper Confidence Limits for Extra Risk in Quantal Multistage Models," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1001-1010, December.
    3. Ralph L. Kodell & Ronnie W. West, 1993. "Upper Confidence Limits on Excess Risk for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 13(2), pages 177-182, April.
    4. Senin Banga & Ganapati P. Patil & Charles Taillie, 2001. "Likelihood Contour Method for the Calculation of Asymptotic Upper Confidence Limits on the Risk Function for Quantitative Responses," Risk Analysis, John Wiley & Sons, vol. 21(4), pages 613-624, August.
    5. W. Slob & M. N. Pieters, 1998. "A Probabilistic Approach for Deriving Acceptable Human Intake Limits and Human Health Risks from Toxicological Studies: General Framework," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 787-798, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiliang Zhu & Tao Wang & Jenny Z.H. Jelsovsky, 2007. "Bootstrap Estimation of Benchmark Doses and Confidence Limits with Clustered Quantal Data," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 447-465, April.
    2. Hilko Van Der Voet & Wout Slob, 2007. "Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 351-371, April.
    3. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    4. Esben Budtz‐Jørgensen & David Bellinger & Bruce Lanphear & Philippe Grandjean & on behalf of the International Pooled Lead Study Investigators, 2013. "An International Pooled Analysis for Obtaining a Benchmark Dose for Environmental Lead Exposure in Children," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 450-461, March.
    5. Alfred K. Mbah & Ibrahim Hamisu & Eknath Naik & Hamisu M. Salihu, 2014. "Estimating Benchmark Exposure for Air Particulate Matter Using Latent Class Models," Risk Analysis, John Wiley & Sons, vol. 34(11), pages 2053-2062, November.
    6. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    7. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    8. Dette, Holger & Pepelyshev, Andrey & Shpilev, Piter & Wong, Weng Kee, 2009. "Optimal designs for estimating critical effective dose under model uncertainty in a dose response study," Technical Reports 2009,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    9. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    10. Daniela K. Nitcheva & Walter W. Piegorsch & R. Webster West & Ralph L. Kodell, 2005. "Multiplicity-Adjusted Inferences in Risk Assessment: Benchmark Analysis with Quantal Response Data," Biometrics, The International Biometric Society, vol. 61(1), pages 277-286, March.
    11. Dette, Holger & Pepelyshev, Andrey & Shpilev, Piter & Wong, Weng Kee, 2009. "Optimal designs for estimating critical effective dose under model uncertainty in a dose response study," Technical Reports 2009,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    12. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    13. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    14. Gupta, Ramesh C. & Wang, Na, 2009. "Estimation of extra risk and benchmark dose in dose–response models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(7), pages 2036-2050.
    15. Xiaowei Ren & Jielai Xia, 2019. "An algorithm for computing profile likelihood based pointwise confidence intervals for nonlinear dose-response models," PLOS ONE, Public Library of Science, vol. 14(1), pages 1-10, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.
    2. Kan Shao & Jeffrey S. Gift, 2014. "Model Uncertainty and Bayesian Model Averaged Benchmark Dose Estimation for Continuous Data," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 101-120, January.
    3. Salomon J. Sand & Dietrich Von Rosen & Agneta Falk Filipsson, 2003. "Benchmark Calculations in Risk Assessment Using Continuous Dose‐Response Information: The Influence of Variance and the Determination of a Cut‐Off Value," Risk Analysis, John Wiley & Sons, vol. 23(5), pages 1059-1068, October.
    4. Walter W. Piegorsch, 2010. "Translational benchmark risk analysis," Journal of Risk Research, Taylor & Francis Journals, vol. 13(5), pages 653-667, July.
    5. Walter W. Piegorsch & Hui Xiong & Rabi N. Bhattacharya & Lizhen Lin, 2014. "Benchmark Dose Analysis via Nonparametric Regression Modeling," Risk Analysis, John Wiley & Sons, vol. 34(1), pages 135-151, January.
    6. Kristi Kuljus & Dietrich Von Rosen & Salomon Sand & Katarina Victorin, 2006. "Comparing Experimental Designs for Benchmark Dose Calculations for Continuous Endpoints," Risk Analysis, John Wiley & Sons, vol. 26(4), pages 1031-1043, August.
    7. Walter W. Piegorsch & R. Webster West, 2005. "Benchmark Analysis: Shopping with Proper Confidence," Risk Analysis, John Wiley & Sons, vol. 25(4), pages 913-920, August.
    8. Esben Budtz-Jørgensen & Niels Keiding & Philippe Grandjean, 2001. "Benchmark Dose Calculation from Epidemiological Data," Biometrics, The International Biometric Society, vol. 57(3), pages 698-706, September.
    9. Mehdi Razzaghi & Ralph L. Kodell, 2000. "Risk Assessment for Quantitative Responses Using a Mixture Model," Biometrics, The International Biometric Society, vol. 56(2), pages 519-527, June.
    10. Meredith M. Regan & Paul J. Catalano, 1999. "Likelihood Models for Clustered Binary and Continuous Out comes: Application to Developmental Toxicology," Biometrics, The International Biometric Society, vol. 55(3), pages 760-768, September.
    11. Mehdi Razzaghi & Ralph Kodell, 2004. "Quantitative Risk Assessment for Developmental Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1673-1681, December.
    12. Tao, Jian & Shi, Ning-Zhong & Lee, S.-Y.Sik-Yum, 2004. "Drug risk assessment with determining the number of sub-populations under finite mixture normal models," Computational Statistics & Data Analysis, Elsevier, vol. 46(4), pages 661-676, July.
    13. Yasushi Suwazono & Kouichi Sakata & Mitsuhiro Oishi & Yasushi Okubo & Mirei Dochi & Etsuko Kobayashi & Teruhiko Kido & Koji Nogawa, 2007. "Estimation of Benchmark Dose as the Threshold Amount of Alcohol Consumption for Blood Pressure in Japanese Workers," Risk Analysis, John Wiley & Sons, vol. 27(6), pages 1487-1495, December.
    14. Liu, Rui-Yin & Tao, Jian & Shi, Ning-Zhong & He, Xuming, 2011. "Bayesian analysis of the patterns of biological susceptibility via reversible jump MCMC sampling," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1498-1508, March.
    15. Katsuyuki Murata & Esben Budtz‐Jørgensen & Philippe Grandjean, 2002. "Benchmark Dose Calculations for Methylmercury‐Associated Delays on Evoked Potential Latencies in Two Cohorts of Children," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 465-474, June.
    16. Zi-Fan Yu & Paul J. Catalano, 2005. "Quantitative Risk Assessment for Multivariate Continuous Outcomes with Application to Neurotoxicology: The Bivariate Case," Biometrics, The International Biometric Society, vol. 61(3), pages 757-766, September.
    17. Roger Cooke, 2010. "Conundrums with Uncertainty Factors," Risk Analysis, John Wiley & Sons, vol. 30(3), pages 330-339, March.
    18. Kenny S. Grump & Tord Kjellström & Annette M. Shipp & Abraham Silvers & Alistair Stewart, 1998. "Influence of Prenatal Mercury Exposure Upon Scholastic and Psychologica Test Performance: Benchmark Analysis of a New Zealand Cohort," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 701-713, December.
    19. Maria A. Sans‐Fuentes & Walter W. Piegorsch, 2021. "Benchmark dose risk analysis with mixed‐factor quantal data in environmental risk assessment," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    20. Hilko Van Der Voet & Wout Slob, 2007. "Integration of Probabilistic Exposure Assessment and Probabilistic Hazard Characterization," Risk Analysis, John Wiley & Sons, vol. 27(2), pages 351-371, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:24:y:2004:i:1:p:31-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.