IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i11p2014-d443730.html
   My bibliography  Save this article

Extended Fuzzy Analytic Hierarchy Process (E-FAHP): A General Approach

Author

Listed:
  • Javier Reig-Mullor

    (Department Economics and Finance Studies, Universitas Miguel Hernandez, Avd. Universidad s/n, 03202 Elche (Alicante), Spain)

  • David Pla-Santamaria

    (Department of Economy and Social Science, Universitat Politècnica de València Alcoy Campus, Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy (Alicante), Spain)

  • Ana Garcia-Bernabeu

    (Department of Economy and Social Science, Universitat Politècnica de València Alcoy Campus, Plaza Ferrándiz y Carbonell, s/n, 03801 Alcoy (Alicante), Spain)

Abstract

Fuzzy analytic hierarchy process (FAHP) methodologies have witnessed a growing development from the late 1980s until now, and countless FAHP based applications have been published in many fields including economics, finance, environment or engineering. In this context, the FAHP methodologies have been generally restricted to fuzzy numbers with linear type of membership functions (triangular numbers—TN—and trapezoidal numbers—TrN). This paper proposes an extended FAHP model (E-FAHP) where pairwise fuzzy comparison matrices are represented by a special type of fuzzy numbers referred to as (m,n)-trapezoidal numbers (TrN (m,n)) with nonlinear membership functions. It is then demonstrated that there are a significant number of FAHP approaches that can be reduced to the proposed E-FAHP structure. A comparative analysis of E-FAHP and Mikhailov’s model is illustrated with a case study showing that E-FAHP includes linear and nonlinear fuzzy numbers.

Suggested Citation

  • Javier Reig-Mullor & David Pla-Santamaria & Ana Garcia-Bernabeu, 2020. "Extended Fuzzy Analytic Hierarchy Process (E-FAHP): A General Approach," Mathematics, MDPI, vol. 8(11), pages 1-14, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2014-:d:443730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/11/2014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/11/2014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Somsuk, Nisakorn & Laosirihongthong, Tritos, 2014. "A fuzzy AHP to prioritize enabling factors for strategic management of university business incubators: Resource-based view," Technological Forecasting and Social Change, Elsevier, vol. 85(C), pages 198-210.
    2. Mandic, Ksenija & Delibasic, Boris & Knezevic, Snezana & Benkovic, Sladjana, 2014. "Analysis of the financial parameters of Serbian banks through the application of the fuzzy AHP and TOPSIS methods," Economic Modelling, Elsevier, vol. 43(C), pages 30-37.
    3. L Mikhailov, 2000. "A fuzzy programming method for deriving priorities in the analytic hierarchy process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 341-349, March.
    4. Mangla, Sachin Kumar & Kumar, Pradeep & Barua, Mukesh Kumar, 2015. "Risk analysis in green supply chain using fuzzy AHP approach: A case study," Resources, Conservation & Recycling, Elsevier, vol. 104(PB), pages 375-390.
    5. Chan, Hing Kai & Wang, Xiaojun & Raffoni, Anna, 2014. "An integrated approach for green design: Life-cycle, fuzzy AHP and environmental management accounting," The British Accounting Review, Elsevier, vol. 46(4), pages 344-360.
    6. S. S. Appadoo, 2014. "Possibilistic Fuzzy Net Present Value Model and Application," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-11, August.
    7. Medaglia, Andres L. & Fang, Shu-Cherng & Nuttle, Henry L. W. & Wilson, James R., 2002. "An efficient and flexible mechanism for constructing membership functions," European Journal of Operational Research, Elsevier, vol. 139(1), pages 84-95, May.
    8. Chang, Da-Yong, 1996. "Applications of the extent analysis method on fuzzy AHP," European Journal of Operational Research, Elsevier, vol. 95(3), pages 649-655, December.
    9. Sachin K. Patil & Ravi Kant, 2014. "Ranking the barriers of knowledge management adoption in supply chain using fuzzy AHP method," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 8(1), pages 52-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Jia & Junfeng Wang & Xin Han & Haiqi Tang & Xiaoling Xiao, 2023. "Application and Performance Evaluation of Industrial Internet Platform in Power Generation Equipment Industry," Sustainability, MDPI, vol. 15(20), pages 1-30, October.
    2. Gerda Ana Melnik-Leroy & Gintautas Dzemyda, 2021. "How to Influence the Results of MCDM?—Evidence of the Impact of Cognitive Biases," Mathematics, MDPI, vol. 9(2), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puppala, Harish & Peddinti, Pranav R.T. & Tamvada, Jagannadha Pawan & Ahuja, Jaya & Kim, Byungmin, 2023. "Barriers to the adoption of new technologies in rural areas: The case of unmanned aerial vehicles for precision agriculture in India," Technology in Society, Elsevier, vol. 74(C).
    2. Hsin-Chieh Wu & Toly Chen & Chin-Hau Huang, 2020. "A Piecewise Linear FGM Approach for Efficient and Accurate FAHP Analysis: Smart Backpack Design as an Example," Mathematics, MDPI, vol. 8(8), pages 1-18, August.
    3. Lizbeth Martínez Ramírez & Jaime Munoz Flores & Arturo Torres Vargas, 2016. "The Analytical Hierarchy Process: An Optimal Methodology for Research in Entrepreneurship (Metoda Analytical Hierarchy Process – optymalna metodologia badan przedsiebiorczosci)," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 14(62), pages 172-186.
    4. Chanthawong, Anuman & Dhakal, Shobhakar, 2016. "Stakeholders' perceptions on challenges and opportunities for biodiesel and bioethanol policy development in Thailand," Energy Policy, Elsevier, vol. 91(C), pages 189-206.
    5. Calabrese, Armando & Costa, Roberta & Levialdi, Nathan & Menichini, Tamara, 2019. "Integrating sustainability into strategic decision-making: A fuzzy AHP method for the selection of relevant sustainability issues," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 155-168.
    6. Sanja Puzović & Jasmina Vesić Vasović & Dragan D. Milanović & Vladan Paunović, 2023. "A Hybrid Fuzzy MCDM Approach to Open Innovation Partner Evaluation," Mathematics, MDPI, vol. 11(14), pages 1-26, July.
    7. Jokar, Ebrahim & Aminnejad, Babak & Lork, Alireza, 2021. "Assessing and Prioritizing Risks in Public-Private Partnership (PPP) Projects Using the Integration of Fuzzy Multi-Criteria Decision-Making Methods," Operations Research Perspectives, Elsevier, vol. 8(C).
    8. Minwir Al-Shammari & Mehdi Mili, 2021. "A fuzzy analytic hierarchy process model for customers’ bank selection decision in the Kingdom of Bahrain," Operational Research, Springer, vol. 21(3), pages 1429-1446, September.
    9. Jana Krejčí & Alessio Ishizaka, 2018. "FAHPSort: A Fuzzy Extension of the AHPSort Method," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1119-1145, July.
    10. Deepak Lamba & Devendra K. Yadav & Akhilesh Barve & Ganapati Panda, 2020. "Prioritizing barriers in reverse logistics of E-commerce supply chain using fuzzy-analytic hierarchy process," Electronic Commerce Research, Springer, vol. 20(2), pages 381-403, June.
    11. Chin-Yi Chen & Jih-Jeng Huang, 2019. "Deriving Fuzzy Weights of the Fuzzy Analytic Network Process via Fuzzy Inverse Matrix," Mathematics, MDPI, vol. 7(10), pages 1-14, October.
    12. Ilić, Damir & Milošević, Isidora & Ilić-Kosanović, Tatjana, 2022. "Application of Unmanned Aircraft Systems for smart city transformation: Case study Belgrade," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    13. Mohsen Ahmadi, 2021. "A Computational Approach to Uncovering Economic Growth Factors," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1051-1076, December.
    14. Shubham Gupta & Raghav Khanna & Pranay Kohli & Sarthak Agnihotri & Umang Soni & M. Asjad, 2023. "Risk evaluation of electric vehicle charging infrastructure using Fuzzy AHP – a case study in India," Operations Management Research, Springer, vol. 16(1), pages 245-258, March.
    15. Irina Vinogradova-Zinkevič, 2023. "Comparative Sensitivity Analysis of Some Fuzzy AHP Methods," Mathematics, MDPI, vol. 11(24), pages 1-41, December.
    16. Raman Kumar Goyal & Sakshi Kaushal, 2018. "Deriving crisp and consistent priorities for fuzzy AHP-based multicriteria systems using non-linear constrained optimization," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 195-209, June.
    17. V. G. Venkatesh & Abraham Zhang & Eric Deakins & Sunil Luthra & S. Mangla, 2019. "A fuzzy AHP-TOPSIS approach to supply partner selection in continuous aid humanitarian supply chains," Annals of Operations Research, Springer, vol. 283(1), pages 1517-1550, December.
    18. Riya Sureka & Satish Kumar & Deepraj Mukherjee & Christina Theodoraki, 2023. "What restricts SMEs from adopting sophisticated capital budgeting practices?," Small Business Economics, Springer, vol. 60(1), pages 265-290, January.
    19. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    20. Mohammad Rezaei & Saeedeh Ketabi, 2016. "Ranking the Banks through Performance Evaluation by Integrating Fuzzy AHP and TOPSIS Methods: A Study of Iranian Private Banks," International Journal of Academic Research in Accounting, Finance and Management Sciences, Human Resource Management Academic Research Society, International Journal of Academic Research in Accounting, Finance and Management Sciences, vol. 6(3), pages 19-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:11:p:2014-:d:443730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.