Author
Listed:
- Yueyi Li
(Department of Logistics Engineering, School of Traffic and Transportation, Beijing Jiaotong University, Shangyuan Cun, Haidian District, Beijing 100044, China)
- Xiaodong Zhang
(Department of Logistics Engineering, School of Traffic and Transportation, Beijing Jiaotong University, Shangyuan Cun, Haidian District, Beijing 100044, China)
Abstract
Effective cooperation between railways and seaports is crucial for enhancing the efficiency of seaport-hinterland corridors (SHC) . However, existing challenges stem from fragmented decision-making across seaports, rail operators, and inland cities, leading to asynchronous routing and scheduling, suboptimal service coverage, and delays. Addressing these issues requires a comprehensive approach to scheduled train service design from a network-based perspective. To tackle the challenges in SHCs, we propose a targeted networked solution that integrates multimodal coordination and resource optimization. The proposed framework is built upon a time-space-state network model, incorporating service selection, timing, and frequency decisions. Furthermore, an improved adaptive large neighborhood search (ALNS) algorithm is developed to enhance computational efficiency and solution quality. The proposed solution is applied to a representative land–sea transport corridor to assess its effectiveness. Compared to traditional operational strategies, our optimized approach yields a 7.6% reduction in transportation costs and a 56.6% decrease in average cargo collection time, highlighting the advantages of networked service coordination. The findings underscore the potential of network-based operational strategies in reducing costs and enhancing efficiency, particularly under unbalanced demand distributions. Additionally, effective demand management policies and targeted infrastructure capacity enhancements at bottleneck points may play a crucial role in practical implementations.
Suggested Citation
Yueyi Li & Xiaodong Zhang, 2025.
"Optimizing Scheduled Train Service for Seaport-Hinterland Corridors: A Time-Space-State Network Approach,"
Mathematics, MDPI, vol. 13(8), pages 1-26, April.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:8:p:1302-:d:1635738
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:8:p:1302-:d:1635738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.