IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i5p797-d1601805.html
   My bibliography  Save this article

A Particle Swarm Optimization-Based Ensemble Broad Learning System for Intelligent Fault Diagnosis in Safety-Critical Energy Systems with High-Dimensional Small Samples

Author

Listed:
  • Jiasheng Yan

    (School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
    Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, University of South China, Hengyang 421001, China)

  • Yang Sui

    (School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
    Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, University of South China, Hengyang 421001, China)

  • Tao Dai

    (School of Nuclear Science and Technology, University of South China, Hengyang 421001, China
    Key Laboratory of Advanced Nuclear Energy Design and Safety, Ministry of Education, University of South China, Hengyang 421001, China)

Abstract

Intelligent fault diagnosis (IFD) plays a crucial role in reducing maintenance costs and enhancing the reliability of safety-critical energy systems (SCESs). In recent years, deep learning-based IFD methods have achieved high fault diagnosis accuracy extracting implicit higher-order correlations between features. However, the excessive long training time of deep learning models conflicts with the requirements of real-time analysis for IFD, hindering their further application in practical industrial environments. To address the aforementioned challenge, this paper proposes an innovative IFD method for SCES that combines the particle swarm optimization (PSO) algorithm and the ensemble broad learning system (EBLS). Specifically, the broad learning system (BLS), known for its low time complexity and high classification accuracy, is adopted as an alternative to deep learning for fault diagnosis in SCES. Furthermore, EBLS is designed to enhance model stability and classification accuracy with high-dimensional small samples by incorporating the random forest (RF) algorithm and an ensemble strategy into the traditional BLS framework. In order to reduce the computational cost of the EBLS, which is constrained by the selection of its hyperparameters, the PSO algorithm is employed to optimize the hyperparameters of the EBLS. Finally, the model is validated through simulated data from a complex nuclear power plant (NPP). Numerical experiments reveal that the proposed method significantly improved the diagnostic efficiency while maintaining high accuracy. In summary, the proposed approach shows great promise for boosting the capabilities of the IFD models for SCES.

Suggested Citation

  • Jiasheng Yan & Yang Sui & Tao Dai, 2025. "A Particle Swarm Optimization-Based Ensemble Broad Learning System for Intelligent Fault Diagnosis in Safety-Critical Energy Systems with High-Dimensional Small Samples," Mathematics, MDPI, vol. 13(5), pages 1-21, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:797-:d:1601805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/5/797/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/5/797/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Jiangkuan & Lin, Meng & Li, Yankai & Wang, Xu, 2022. "Transfer learning network for nuclear power plant fault diagnosis with unlabeled data under varying operating conditions," Energy, Elsevier, vol. 254(PB).
    2. Yao, Yuantao & Han, Te & Yu, Jie & Xie, Min, 2024. "Uncertainty-aware deep learning for reliable health monitoring in safety-critical energy systems," Energy, Elsevier, vol. 291(C).
    3. Peng Jieyang & Andreas Kimmig & Wang Dongkun & Zhibin Niu & Fan Zhi & Wang Jiahai & Xiufeng Liu & Jivka Ovtcharova, 2023. "A systematic review of data-driven approaches to fault diagnosis and early warning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3277-3304, December.
    4. Irani, Fatemeh Negar & Soleimani, Mohammadjavad & Yadegar, Meysam & Meskin, Nader, 2024. "Deep transfer learning strategy in intelligent fault diagnosis of gas turbines based on the Koopman operator," Applied Energy, Elsevier, vol. 365(C).
    5. Süle, Zoltán & Baumgartner, János & Dörgő, Gyula & Abonyi, János, 2019. "P-graph-based multi-objective risk analysis and redundancy allocation in safety-critical energy systems," Energy, Elsevier, vol. 179(C), pages 989-1003.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Tian & Xingqin Zhang & Shuangqing Zheng & Zhiyong Liu & Changshu Zhan, 2024. "Synergising an Advanced Optimisation Technique with Deep Learning: A Novel Method in Fault Warning Systems," Mathematics, MDPI, vol. 12(9), pages 1-25, April.
    2. Chuan Li & Yifan Wu & Manjun Xiong & Shuai Yang & Yun Bai, 2025. "Self-supervised fusion of deep soft assignments for multi-view diagnosis of machine faults," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2493-2507, April.
    3. Botond Bertók & Tibor Csendes & Gábor Galambos, 2021. "Operations research in Hungary: VOCAL 2018," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 379-386, June.
    4. Jiang, Dingyu & Wu, Hexin & Gou, Junli & Zhang, Bo & Shan, Jianqiang, 2025. "Performance analysis and improvement of data-driven fault diagnosis models under domain discrepancy base on a small modular reactor," Energy, Elsevier, vol. 316(C).
    5. Huang, Ruchen & He, Hongwen & Su, Qicong & Härtl, Martin & Jaensch, Malte, 2025. "Type- and task-crossing energy management for fuel cell vehicles with longevity consideration: A heterogeneous deep transfer reinforcement learning framework," Applied Energy, Elsevier, vol. 377(PC).
    6. Yang, Kuang & Liao, Haifan & Xu, Bo & Chen, Qiuxiang & Hou, Zhenghui & Wang, Haijun, 2024. "Data-driven dryout prediction in helical-coiled once-through steam generator: A physics-informed approach leveraging the Buckingham Pi theorem," Energy, Elsevier, vol. 294(C).
    7. Luo, Run & Li, Yadong & Guo, Huiyu & Wang, Qi & Wang, Xiaolie, 2024. "Cross-operating-condition fault diagnosis of a small module reactor based on CNN-LSTM transfer learning with limited data," Energy, Elsevier, vol. 313(C).
    8. Wang, Haotong & Li, Yanjun & Lin, Chaojing & Yang, Siyuan & Li, Guolong & Sun, Shengdi & Tian, Ye & Shi, Jianxin, 2024. "Research on condition assessment of nuclear power systems based on fault severity and fault harmfulness," Energy, Elsevier, vol. 311(C).
    9. Huang, Kai & Ren, Zhijun & Zhu, Linbo & Lin, Tantao & Zhu, Yongsheng & Zeng, Li & Wan, Jin, 2025. "A three-stage bearing transfer fault diagnosis method for large domain shift scenarios," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    10. Ben Qi & Jingang Liang & Jiejuan Tong, 2023. "Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective," Energies, MDPI, vol. 16(4), pages 1-27, February.
    11. Li, Hao & Jiao, Jinyang & Liu, Zongyang & Lin, Jing & Zhang, Tian & Liu, Hanyang, 2025. "Trustworthy Bayesian deep learning framework for uncertainty quantification and confidence calibration: Application in machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    12. Cabral, Charlette & Andiappan, Viknesh & Aviso, Kathleen & Tan, Raymond, 2021. "Equipment size selection for optimizing polygeneration systems with reliability aspects," Energy, Elsevier, vol. 234(C).
    13. Chen, Fei & Ding, Chen & Hu, Xiaoxi & He, Xianghui & Yin, Xiuxing & Yang, Jiandong & Zhao, Zhigao, 2025. "Tensor Poincaré plot index: A novel nonlinear dynamic method for extracting abnormal state information of pumped storage units," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
    14. Bi, Yubo & Wu, Qiulan & Wang, Shilu & Shi, Jihao & Cong, Haiyong & Ye, Lili & Gao, Wei & Bi, Mingshu, 2023. "Hydrogen leakage location prediction at hydrogen refueling stations based on deep learning," Energy, Elsevier, vol. 284(C).
    15. András Éles & István Heckl & Heriberto Cabezas, 2021. "Modeling technique in the P-Graph framework for operating units with flexible input ratios," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 463-489, June.
    16. Lin, Meng & Li, Jiangkuan & Li, Yankai & Wang, Xu & Jin, Chengyi & Chen, Junjie, 2023. "Generalization analysis and improvement of CNN-based nuclear power plant fault diagnosis model under varying power levels," Energy, Elsevier, vol. 282(C).
    17. Cui, Chengcheng & Zhang, Junli & Shen, Jiong, 2023. "System-level modeling, analysis and coordinated control design for the pressurized water reactor nuclear power system," Energy, Elsevier, vol. 283(C).
    18. Cheng, Wei & Ahmad, Hassaan & Gao, Lin & Xing, Ji & Nie, Zelin & Chen, Xuefeng & Xu, Zhao & Zhang, Rongyong, 2025. "Diagnostics and Prognostics in Power Plants: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 255(C).
    19. Wang, Shaoxuan & Ge, Daochuan & Yong, Nuo & Sun, Ming & Yao, Yuantao & Tao, Longlong & Xia, Dongqin & Wang, Feipeng & Yu, Jie, 2025. "Rapid computation of survival signature for dynamic fault tree based on sequential binary decision diagram and multidimensional array," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    20. Sinha, Aparna & Das, Debanjan & Palavalasa, Suneel Kumar, 2023. "dClink: A data-driven based clinkering prediction framework with automatic feature selection capability in 500 MW coal-fired boilers," Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:5:p:797-:d:1601805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.