IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs0951832024006781.html
   My bibliography  Save this article

Tensor Poincaré plot index: A novel nonlinear dynamic method for extracting abnormal state information of pumped storage units

Author

Listed:
  • Chen, Fei
  • Ding, Chen
  • Hu, Xiaoxi
  • He, Xianghui
  • Yin, Xiuxing
  • Yang, Jiandong
  • Zhao, Zhigao

Abstract

Efficiently extracting information from the massive data that characterize the abnormal condition is an important topic for pumped storage units (PSUs) operation and maintenance. Existing feature extraction methods for PSUs have weakened the connection between time and frequency domain features of signals, and the extracted information cannot fully represent the PSU operational state. Therefore, the paper proposes tensor Poincaré plot index (TPPI), a feature extraction method for quantifying PSU operation on multiple time and frequency scales. Firstly, the operational datasets are hierarchically decomposed and coarsely granulated to obtain components at different time and frequency scales. Secondly, the different components are sequentially transformed into Poincaré plots, and the key indexes of these plots are extracted, respectively. Finally, the proposed model is constructed by the extracted features and random forests. The proposed model is applied to two case of hydraulic anomaly identification and mechanical fault diagnosis, based on the measurement of the actual PSUs. The results show that indicators of this method are no less than 99.629 % and 99.660 %. In comparison experiments with 15 popular methods, the proposed model exhibits superior competitiveness, robustly affirming the advantages of the TPPI. The proposed method is helpful for promoting the intelligent construction of PSUs.

Suggested Citation

  • Chen, Fei & Ding, Chen & Hu, Xiaoxi & He, Xianghui & Yin, Xiuxing & Yang, Jiandong & Zhao, Zhigao, 2025. "Tensor Poincaré plot index: A novel nonlinear dynamic method for extracting abnormal state information of pumped storage units," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024006781
    DOI: 10.1016/j.ress.2024.110607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jin, Xiaoyu & Liu, Benxi & Liao, Shengli & Cheng, Chuntian & Jurasz, Jakub & Zhang, Yi & Lu, Jia, 2023. "Exploring the transition role of cascade hydropower in 100% decarbonized energy systems," Energy, Elsevier, vol. 279(C).
    2. Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
    3. Shao, Kaixuan & He, Yigang & Xing, Zhikai & Du, Bolun, 2023. "Detecting wind turbine anomalies using nonlinear dynamic parameters-assisted machine learning with normal samples," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Rubén Medina & Jean Carlo Macancela & Pablo Lucero & Diego Cabrera & René-Vinicio Sánchez & Mariela Cerrada, 2022. "Gear and bearing fault classification under different load and speed by using Poincaré plot features and SVM," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1031-1055, April.
    5. Betti, Alessandro & Crisostomi, Emanuele & Paolinelli, Gianluca & Piazzi, Antonio & Ruffini, Fabrizio & Tucci, Mauro, 2021. "Condition monitoring and predictive maintenance methodologies for hydropower plants equipment," Renewable Energy, Elsevier, vol. 171(C), pages 246-253.
    6. Zhao, Zhigao & Chen, Fei & Gui, Zhonghua & Liu, Dong & Yang, Jiandong, 2023. "Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices," Renewable Energy, Elsevier, vol. 218(C).
    7. Zhu, Hongtao & Gao, Xueping & Liu, Yinzhu & Liu, Shuai, 2023. "Numerical and experimental assessment of the water discharge segment in a pumped-storage power station," Energy, Elsevier, vol. 265(C).
    8. Lu, Shibao & Ye, Weiwei & Xue, Yangang & Tang, Yao & Guo, Min, 2020. "Dynamic feature information extraction using the special empirical mode decomposition entropy value and index energy," Energy, Elsevier, vol. 193(C).
    9. Mahfoud, Rabea Jamil & Alkayem, Nizar Faisal & Zhang, Yuquan & Zheng, Yuan & Sun, Yonghui & Alhelou, Hassan Haes, 2023. "Optimal operation of pumped hydro storage-based energy systems: A compendium of current challenges and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    10. Peng Jieyang & Andreas Kimmig & Wang Dongkun & Zhibin Niu & Fan Zhi & Wang Jiahai & Xiufeng Liu & Jivka Ovtcharova, 2023. "A systematic review of data-driven approaches to fault diagnosis and early warning," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3277-3304, December.
    11. BULUT, Merve & ÖZCAN, Evrencan, 2021. "A new approach to determine maintenance periods of the most critical hydroelectric power plant equipment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Wang, Huan & Li, Wenfeng & Hou, Yaochun & Wu, Peng & Huang, Bin & Wu, Kelin & Wu, Dazhuan, 2023. "Recognition of the developing vortex rope in Francis turbine draft tube based on PSO-CS2," Renewable Energy, Elsevier, vol. 217(C).
    14. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    15. Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
    16. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    17. Alvarez, Gonzalo E., 2020. "Operation of pumped storage hydropower plants through optimization for power systems," Energy, Elsevier, vol. 202(C).
    18. Wang, Pengfei & Xu, Zhenkun & Chen, Diyi, 2023. "An integrated framework for reliability prediction and condition-based maintenance policy for a hydropower generation unit using GPHM and SMDP," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    19. Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei, Shuaihao & Cheng, Li & Yang, Weixing & Xu, Wentao & Yu, Lei & Luo, Can & Jiao, Weixuan & Shen, Jiantao, 2024. "Dynamic multiscale pressure fluctuation features extraction of mixed-flow pump as turbine (PAT) and flow state recognition of the outlet passage using variational mode decomposition and refined compos," Energy, Elsevier, vol. 305(C).
    2. Zhao, Zhigao & Chen, Fei & He, Xianghui & Lan, Pengfei & Chen, Diyi & Yin, Xiuxing & Yang, Jiandong, 2024. "A universal hydraulic-mechanical diagnostic framework based on feature extraction of abnormal on-field measurements: Application in micro pumped storage system," Applied Energy, Elsevier, vol. 357(C).
    3. Luo, Xiaolin & Huang, Li & Sui, Xin, 2025. "Capacity optimization of existing reservoir hydropower expansion and its impact on power system flexibility," Applied Energy, Elsevier, vol. 377(PD).
    4. Zheng, Xianghao & Li, Hao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning & Zhao, Weiqiang, 2023. "Hydrodynamic feature extraction and intelligent identification of flow regimes in vaneless space of a pump turbine using improved empirical wavelet transform and Bayesian optimized convolutional neura," Energy, Elsevier, vol. 282(C).
    5. Zhao, Zhigao & Chen, Fei & Gui, Zhonghua & Liu, Dong & Yang, Jiandong, 2023. "Refined composite hierarchical multiscale Lempel-Ziv complexity: A quantitative diagnostic method of multi-feature fusion for rotating energy devices," Renewable Energy, Elsevier, vol. 218(C).
    6. Zheng, Xianghao & Zhang, Suqi & Zhang, Yuning & Li, Jinwei & Zhang, Yuning, 2023. "Dynamic characteristic analysis of pressure pulsations of a pump turbine in turbine mode utilizing variational mode decomposition combined with Hilbert transform," Energy, Elsevier, vol. 280(C).
    7. Nengpeng Duan & Yun Zeng & Fang Dao & Shuxian Xu & Xianglong Luo, 2025. "Fault Diagnosis of Hydro-Turbine Based on CEEMDAN-MPE Preprocessing Combined with CPO-BILSTM Modelling," Energies, MDPI, vol. 18(6), pages 1-27, March.
    8. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    9. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Fatemeh Hajimohammadali & Emanuele Crisostomi & Mauro Tucci & Nunzia Fontana, 2024. "Evaluating Deep Learning Networks Versus Hybrid Network for Smart Monitoring of Hydropower Plants," Energies, MDPI, vol. 17(22), pages 1-16, November.
    11. Dehghan, Amir Arsalan & Shojaeefard, Mohammad Hassan & Roshanaei, Maryam, 2024. "Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation," Energy, Elsevier, vol. 293(C).
    12. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    13. Zhu, Yunyi & Xie, Bin & Wang, Anqi & Qian, Zheng, 2025. "Wind turbine fault detection and identification via self-attention-based dynamic graph representation learning and variable-level normalizing flow," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    14. Jia Tian & Xingqin Zhang & Shuangqing Zheng & Zhiyong Liu & Changshu Zhan, 2024. "Synergising an Advanced Optimisation Technique with Deep Learning: A Novel Method in Fault Warning Systems," Mathematics, MDPI, vol. 12(9), pages 1-25, April.
    15. Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. He, Xianghui & Yang, Jiandong & Yang, Jiebin & Zhao, Zhigao & Hu, Jinhong & Peng, Tao, 2023. "Evolution mechanism of water column separation in pump turbine: Model experiment and occurrence criterion," Energy, Elsevier, vol. 265(C).
    17. Jakov Batelić & Karlo Griparić & Dario Matika, 2021. "Impact of Remediation-Based Maintenance on the Reliability of a Coal-Fired Power Plant Using Generalized Stochastic Petri Nets," Energies, MDPI, vol. 14(18), pages 1-14, September.
    18. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Lang, Xiao & Nilsson, Håkan & Mao, Wengang, 2024. "Analysis of hydropower plant guide bearing vibrations by machine learning based identification of steady operations," Renewable Energy, Elsevier, vol. 236(C).
    20. Wang, Huan & Liao, Shengli & Cheng, Chuntian & Liu, Benxi & Fang, Zhou & Wu, Huijun, 2025. "Short-term scheduling strategies for hydro-wind-solar-storage considering variable-speed unit of pumped storage," Applied Energy, Elsevier, vol. 377(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024006781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.