IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v254y2025ipbs0951832024006781.html
   My bibliography  Save this article

Tensor Poincaré plot index: A novel nonlinear dynamic method for extracting abnormal state information of pumped storage units

Author

Listed:
  • Chen, Fei
  • Ding, Chen
  • Hu, Xiaoxi
  • He, Xianghui
  • Yin, Xiuxing
  • Yang, Jiandong
  • Zhao, Zhigao

Abstract

Efficiently extracting information from the massive data that characterize the abnormal condition is an important topic for pumped storage units (PSUs) operation and maintenance. Existing feature extraction methods for PSUs have weakened the connection between time and frequency domain features of signals, and the extracted information cannot fully represent the PSU operational state. Therefore, the paper proposes tensor Poincaré plot index (TPPI), a feature extraction method for quantifying PSU operation on multiple time and frequency scales. Firstly, the operational datasets are hierarchically decomposed and coarsely granulated to obtain components at different time and frequency scales. Secondly, the different components are sequentially transformed into Poincaré plots, and the key indexes of these plots are extracted, respectively. Finally, the proposed model is constructed by the extracted features and random forests. The proposed model is applied to two case of hydraulic anomaly identification and mechanical fault diagnosis, based on the measurement of the actual PSUs. The results show that indicators of this method are no less than 99.629 % and 99.660 %. In comparison experiments with 15 popular methods, the proposed model exhibits superior competitiveness, robustly affirming the advantages of the TPPI. The proposed method is helpful for promoting the intelligent construction of PSUs.

Suggested Citation

  • Chen, Fei & Ding, Chen & Hu, Xiaoxi & He, Xianghui & Yin, Xiuxing & Yang, Jiandong & Zhao, Zhigao, 2025. "Tensor Poincaré plot index: A novel nonlinear dynamic method for extracting abnormal state information of pumped storage units," Reliability Engineering and System Safety, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024006781
    DOI: 10.1016/j.ress.2024.110607
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006781
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110607?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:254:y:2025:i:pb:s0951832024006781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.