IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p425-d1578583.html
   My bibliography  Save this article

Multi-Objective Optimization in Disaster Backup with Reinforcement Learning

Author

Listed:
  • Shanwen Yi

    (School of Computer Science and Technology, Shandong University, Jinan 250100, China)

  • Yao Qin

    (Department of Investigation, Shanghai Police College, Shanghai 200137, China)

  • Hua Wang

    (School of Software, Shandong University, Jinan 250100, China)

Abstract

Disaster backup, which occurs over long distances and involves large data volumes, often leads to huge energy consumption and the long-term occupation of network resources. However, existing work in this area lacks adequate optimization of the trade-off between energy consumption and latency. We consider the one-to-many characteristic in disaster backup and propose a novel algorithm based on multicast and reinforcement learning to optimize the data transmission process. We aim to jointly reduce network energy consumption and latency while meeting the requirements of network performance and Quality of Service. We leverage hybrid-step Q-Learning, which can more accurately estimate the long-term reward of each path. We enhance the utilization of shared nodes and links by introducing the node sharing degree in the reward value. We perform path selection through three different levels to improve algorithm efficiency and robustness. To simplify weight selection among multiple objectives, we leverage the Chebyshev scalarization function based on roulette to evaluate the action reward. We implement comprehensive performance evaluation with different network settings and demand sets and provide an implementation prototype to verify algorithm applicability in a real-world network structure. The simulation results show that compared with existing representative algorithms, our algorithm can effectively reduce network energy consumption and latency during the data transmission of disaster backup while obtaining good convergence and robustness.

Suggested Citation

  • Shanwen Yi & Yao Qin & Hua Wang, 2025. "Multi-Objective Optimization in Disaster Backup with Reinforcement Learning," Mathematics, MDPI, vol. 13(3), pages 1-26, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:425-:d:1578583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Quan & Li, Ji & Shuai, Bin & Williams, Huw & He, Yinglong & Li, Ziyang & Xu, Hongming & Yan, Fuwu, 2019. "Multi-step reinforcement learning for model-free predictive energy management of an electrified off-highway vehicle," Applied Energy, Elsevier, vol. 255(C).
    2. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    2. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    3. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    4. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    6. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    7. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    8. Pawanesh Pawanesh & Charu Sharma & Niteesh Sahni, 2025. "Analyzing Communicability and Connectivity in the Indian Stock Market During Crises," Papers 2502.08242, arXiv.org.
    9. Daniel Reisinger & Fabian Tschofenig & Raven Adam & Marie Lisa Kogler & Manfred Füllsack & Fabian Veider & Georg Jäger, 2024. "Patterns of stability in complex contagions," Journal of Computational Social Science, Springer, vol. 7(2), pages 1895-1911, October.
    10. Gregory Gutin & Tomohiro Hirano & Sung-Ha Hwang & Philip R. Neary & Alexis Akira Toda, 2021. "The effect of social distancing on the reach of an epidemic in social networks," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 629-647, July.
    11. Jie, Ke-Wei & Liu, San-Yang & Sun, Xiao-Jun & Xu, Yun-Cheng, 2023. "A dynamic ripple-spreading algorithm for solving mean–variance of shortest path model in uncertain random networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    12. Yu Gong & Xiaojiang Xu & Changping Zhao & Tobias Schoenherr, 2024. "Multi-Tier Supply Chain Learning Networks: A Simulation Study Based on the Experience-Weighted Attraction (EWA) Model," Sustainability, MDPI, vol. 16(10), pages 1-25, May.
    13. Divakaruni, Anantha & Zimmerman, Peter, 2023. "The Lightning Network: Turning Bitcoin into money," Finance Research Letters, Elsevier, vol. 52(C).
    14. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    15. Daniel Egan & Qilun Zhu & Robert Prucka, 2023. "A Review of Reinforcement Learning-Based Powertrain Controllers: Effects of Agent Selection for Mixed-Continuity Control and Reward Formulation," Energies, MDPI, vol. 16(8), pages 1-31, April.
    16. Chen, Feng & Wu, Bin & Lou, Wen-qian & Zhu, Bo-wen, 2024. "Impact of dual-credit policy on diffusion of technology R & D among automakers: Based on an evolutionary game model with technology-spillover in complex network," Energy, Elsevier, vol. 303(C).
    17. Hongjuan Zhang & Haibing Liu & Rongkai Chen, 2025. "Policy-Driven Dynamics in Sustainable Recycling: Evolutionary Dynamics on Multiple Networks with Case Insights from China," Sustainability, MDPI, vol. 17(11), pages 1-30, June.
    18. Xiaodi Ni & Lijun Yang, 2024. "Mapping Salience and Trajectory: On How to Situate Literary Translators in Publishing Legends of the Condor Heroes With Visualization," SAGE Open, , vol. 14(2), pages 21582440241, May.
    19. Abderrahim Zannou & Abdelhak Boulaalam & El Habib Nfaoui, 2020. "SIoT: A New Strategy to Improve the Network Lifetime with an Efficient Search Process," Future Internet, MDPI, vol. 13(1), pages 1-23, December.
    20. Jingsha He & Yue Li & Nafei Zhu, 2023. "A Game Theory-Based Model for the Dissemination of Privacy Information in Online Social Networks," Future Internet, MDPI, vol. 15(3), pages 1-17, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:425-:d:1578583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.