IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2682-d1728776.html
   My bibliography  Save this article

Aggregation Operator-Based Trapezoidal-Valued Intuitionistic Fuzzy WASPAS Algorithm and Its Applications in Selecting the Location for a Wind Power Plant Project

Author

Listed:
  • Bibhuti Bhusana Meher

    (Department of Engineering Sciences, Atal Bihari Vajpayee Indian Institute of Information Technology and Management, Gwalior 474015, India)

  • Jeevaraj Selvaraj

    (Department of Engineering Sciences, Atal Bihari Vajpayee Indian Institute of Information Technology and Management, Gwalior 474015, India)

  • Melfi Alrasheedi

    (Department of Quantitative Methods, School of Business, King Faisal University, Al-Ahsa 31982, Saudi Arabia)

Abstract

Trapezoidal-valued intuitionistic fuzzy numbers (TrVIFNs) are the real generalizations of intuitionistic fuzzy numbers, interval-valued intuitionistic fuzzy numbers, and triangular intuitionistic fuzzy numbers, which effectively model real-life problems that consist of imprecise and incomplete data. This study incorporates the Aczel-Alsina aggregation operators (which consist of parameter-based flexibility) for solving any group of decision-making problems modeled in a trapezoidal-valued intuitionistic fuzzy (TrVIF) environment. In this study, we first define new operations on TrVIFNs based on the Aczel-Alsina operations. Secondly, we introduce new trapezoidal-valued intuitionistic fuzzy aggregation operators, such as the TrVIF Aczel-Alsina weighted averaging operator, the TrVIF Aczel-Alsina ordered weighted averaging operator, and the TrVIF Aczel-Alsina hybrid averaging operator, and we discuss their fundamental mathematical properties by examining various theorems. This study also includes a new algorithm named ‘three-stage multi-criteria group decision-making’, where we obtain the criteria weights using the newly proposed TrVIF-MEREC method. Additionally, we introduce a new modified algorithm called TrVIF-WASPAS to solve the multi-criteria decision-making (MCDM) problem in the trapezoidal-valued intuitionistic fuzzy environment. Then, we apply this proposed method to solve a model case study problem involving location selection for a wind power plant project. Then, we discuss the proposed algorithm’s sensitivity analysis by changing the criteria weights concerning different parameter values. Finally, we compare our proposed methods with various existing methods, like some subclasses of TrVIFNs such as IVIFWA, IVIFWG, IVIFEWA, and IVIFEWG, and also with some MCGDM methods of TrVIFNs, such as the Dombi aggregation operator-based method in TrVIFNs and the TrVIF-Topsis method-based MCGDM, to show the efficacy of our proposed algorithm. This study has many advantages, as it consists of a total ordering principle in ranking alternatives in the newly proposed TrVIF-MCGDM techniques and TrVIF-WASPAS MCDM techniques for the first time in the literature.

Suggested Citation

  • Bibhuti Bhusana Meher & Jeevaraj Selvaraj & Melfi Alrasheedi, 2025. "Aggregation Operator-Based Trapezoidal-Valued Intuitionistic Fuzzy WASPAS Algorithm and Its Applications in Selecting the Location for a Wind Power Plant Project," Mathematics, MDPI, vol. 13(16), pages 1-38, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2682-:d:1728776
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2682/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2682/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Amy H.I. & Chen, Hsing Hung & Kang, He-Yau, 2009. "Multi-criteria decision making on strategic selection of wind farms," Renewable Energy, Elsevier, vol. 34(1), pages 120-126.
    2. Mahmood Shafiee, 2022. "Wind Energy Development Site Selection Using an Integrated Fuzzy ANP-TOPSIS Decision Model," Energies, MDPI, vol. 15(12), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    2. Pınar Kaya Samut, 2017. "Integrated FANP-f-MIGP model for supplier selection in the renewable energy sector," Journal of Business Economics and Management, Taylor & Francis Journals, vol. 18(3), pages 427-450, May.
    3. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    4. Sun, Yanwei & Ai, Hongying & Li, Ying & Wang, Run & Ma, Renfeng, 2024. "Data-driven large-scale spatial planning framework for determining size and location of offshore wind energy development: A case study of China," Applied Energy, Elsevier, vol. 367(C).
    5. Grošelj, Petra & Hodges, Donald G. & Zadnik Stirn, Lidija, 2016. "Participatory and multi-criteria analysis for forest (ecosystem) management: A case study of Pohorje, Slovenia," Forest Policy and Economics, Elsevier, vol. 71(C), pages 80-86.
    6. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
    7. Nasrollahi, Sadaf & Kazemi, Aliyeh & Jahangir, Mohammad-Hossein & Aryaee, Sara, 2023. "Selecting suitable wave energy technology for sustainable development, an MCDM approach," Renewable Energy, Elsevier, vol. 202(C), pages 756-772.
    8. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    9. Sofia Spyridonidou & Dimitra G. Vagiona, 2020. "Systematic Review of Site-Selection Processes in Onshore and Offshore Wind Energy Research," Energies, MDPI, vol. 13(22), pages 1-26, November.
    10. van Rensburg, Thomas M. & Kelley, Hugh & Jeserich, Nadine, 2015. "What influences the probability of wind farm planning approval: Evidence from Ireland," Ecological Economics, Elsevier, vol. 111(C), pages 12-22.
    11. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    12. Suškevičs, M. & Eiter, S. & Martinat, S. & Stober, D. & Vollmer, E. & de Boer, C.L. & Buchecker, M., 2019. "Regional variation in public acceptance of wind energy development in Europe: What are the roles of planning procedures and participation?," Land Use Policy, Elsevier, vol. 81(C), pages 311-323.
    13. Ke Wang & Ziyi Ying & Shankha Shubhra Goswami & Yongsheng Yin & Yafei Zhao, 2023. "Investigating the Role of Artificial Intelligence Technologies in the Construction Industry Using a Delphi-ANP-TOPSIS Hybrid MCDM Concept under a Fuzzy Environment," Sustainability, MDPI, vol. 15(15), pages 1-42, August.
    14. Cho, Sangmin & Kim, Jinsoo & Heo, Eunnyeong, 2015. "Application of fuzzy analytic hierarchy process to select the optimal heating facility for Korean horticulture and stockbreeding sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1075-1083.
    15. Alicja Lenarczyk & Marcin Jaskólski & Paweł Bućko, 2022. "The Application of a Multi-Criteria Decision-Making for Indication of Directions of the Development of Renewable Energy Sources in the Context of Energy Policy," Energies, MDPI, vol. 15(24), pages 1-21, December.
    16. Sliz-Szkliniarz, B. & Eberbach, J. & Hoffmann, B. & Fortin, M., 2019. "Assessing the cost of onshore wind development scenarios: Modelling of spatial and temporal distribution of wind power for the case of Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 514-531.
    17. Wang, Junqi & Cao, Hongjun, 2022. "Improving competitive strategic decisions of Chinese coal companies toward green transformation: A hybrid multi-criteria decision-making model," Resources Policy, Elsevier, vol. 75(C).
    18. Parra-López, Carlos & Reina-Usuga, Liliana & Carmona-Torres, Carmen & Sayadi, Samir & Klerkx, Laurens, 2021. "Digital transformation of the agrifood system: Quantifying the conditioning factors to inform policy planning in the olive sector," Land Use Policy, Elsevier, vol. 108(C).
    19. Büyüközkan, Gülçin & Karabulut, Yağmur, 2017. "Energy project performance evaluation with sustainability perspective," Energy, Elsevier, vol. 119(C), pages 549-560.
    20. Doljak, Dejan & Stanojević, Gorica, 2017. "Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia," Energy, Elsevier, vol. 127(C), pages 291-300.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2682-:d:1728776. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.