IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i16p2654-d1727051.html
   My bibliography  Save this article

A Synchronized Optimization Method of Frequency Setting, Timetabling, and Train Circulation Planning for URT Networks with Overlapping Lines: A Case Study of the Addis Ababa Light Rail Transit Service

Author

Listed:
  • Wenliang Zhou

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Addishiwot Alemu

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Mehdi Oldache

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

Urban rail transit (URT) systems are essential to ensuring efficient and sustainable urban mobility. However, the core components of operational planning, service frequency setting, train timetabling, and train allocation are often optimized separately, leading to fragmented decision-making and suboptimal system performance. This study addresses that gap by proposing an integrated optimization framework that simultaneously considers all three planning layers under time-dependent passenger demand conditions. The problem is formulated as a bi-objective Integer Nonlinear Programming (INLP) model, aiming to jointly minimize passenger waiting time and total operational cost. To solve this large-scale, combinatorial problem, a tailored Multi-Objective Particle Swarm Optimization (MOPSO) algorithm is developed. The algorithm incorporates discrete variable handling, constraint-preserving mechanisms, and a customized encoding scheme that aligns with the structural characteristics of URT operations. The proposed framework is applied to real-world data from the Addis Ababa Light Rail Transit (AALRT) system. The results demonstrate that the MOPSO-based approach offers a more diverse and operationally feasible set of trade-off solutions compared to a widely used benchmark algorithm, NSGA-II. Specifically, it provides transit planners with a flexible decision-support tool capable of identifying schedules that balance service quality and cost, based on varying strategic or budgetary priorities. By integrating interdependent planning decisions into a unified model and leveraging the strengths of a customized metaheuristic algorithm, this study contributes a scalable, adaptable, and practically relevant methodology for improving the performance of urban rail systems.

Suggested Citation

  • Wenliang Zhou & Addishiwot Alemu & Mehdi Oldache, 2025. "A Synchronized Optimization Method of Frequency Setting, Timetabling, and Train Circulation Planning for URT Networks with Overlapping Lines: A Case Study of the Addis Ababa Light Rail Transit Service," Mathematics, MDPI, vol. 13(16), pages 1-28, August.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2654-:d:1727051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/16/2654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/16/2654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shi, Jungang & Yang, Lixing & Yang, Jing & Gao, Ziyou, 2018. "Service-oriented train timetabling with collaborative passenger flow control on an oversaturated metro line: An integer linear optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 26-59.
    2. Rachel C. W. Wong & Tony W. Y. Yuen & Kwok Wah Fung & Janny M. Y. Leung, 2008. "Optimizing Timetable Synchronization for Rail Mass Transit," Transportation Science, INFORMS, vol. 42(1), pages 57-69, February.
    3. Ruiz, Elkin & Yushimito, Wilfredo F. & Aburto, Luis & de la Cruz, Rolando, 2024. "Predicting passenger satisfaction in public transportation using machine learning models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    4. Wenliang Zhou & Mehdi Oldache, 2021. "Integrated Optimization of Line Planning, Timetabling and Rolling Stock Allocation for Urban Railway Lines," Sustainability, MDPI, vol. 13(23), pages 1-32, November.
    5. Abdolmaleki, Mojtaba & Masoud, Neda & Yin, Yafeng, 2020. "Transit timetable synchronization for transfer time minimization," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 143-159.
    6. Niu, Huimin & Zhou, Xuesong & Gao, Ruhu, 2015. "Train scheduling for minimizing passenger waiting time with time-dependent demand and skip-stop patterns: Nonlinear integer programming models with linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 117-135.
    7. Wang, Yihui & D’Ariano, Andrea & Yin, Jiateng & Meng, Lingyun & Tang, Tao & Ning, Bin, 2018. "Passenger demand oriented train scheduling and rolling stock circulation planning for an urban rail transit line," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 193-227.
    8. Yung-Hsiang Cheng & Yu-Chun Tsai, 2014. "Train delay and perceived-wait time: passengers' perspective," Transport Reviews, Taylor & Francis Journals, vol. 34(6), pages 710-729, November.
    9. Yan, Fei & Goverde, Rob M.P., 2019. "Combined line planning and train timetabling for strongly heterogeneous railway lines with direct connections," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 20-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Jiateng & D’Ariano, Andrea & Wang, Yihui & Yang, Lixing & Tang, Tao, 2021. "Timetable coordination in a rail transit network with time-dependent passenger demand," European Journal of Operational Research, Elsevier, vol. 295(1), pages 183-202.
    2. Yin, Jiateng & Wang, Miao & D’Ariano, Andrea & Zhang, Jinlei & Yang, Lixing, 2023. "Synchronization of train timetables in an urban rail network: A bi-objective optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    3. Pan Shang & Yu Yao & Liya Yang & Lingyun Meng & Pengli Mo, 2021. "Integrated Model for Timetabling and Circulation Planning on an Urban Rail Transit Line: a Coupled Network-Based Flow Formulation," Networks and Spatial Economics, Springer, vol. 21(2), pages 331-364, June.
    4. Chai, Simin & Yin, Jiateng & D’Ariano, Andrea & Liu, Ronghui & Yang, Lixing & Tang, Tao, 2024. "A branch-and-cut algorithm for scheduling train platoons in urban rail networks," Transportation Research Part B: Methodological, Elsevier, vol. 181(C).
    5. Xue, Hongjiao & Jia, Limin & Li, Jian & Guo, Jianyuan, 2022. "Jointly optimized demand-oriented train timetable and passenger flow control strategy for a congested subway line under a short-turning operation pattern," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    6. Chen, Zebin & Li, Shukai & D’Ariano, Andrea & Yang, Lixing, 2022. "Real-time optimization for train regulation and stop-skipping adjustment strategy of urban rail transit lines," Omega, Elsevier, vol. 110(C).
    7. Wenliang Zhou & Wenzhuang Fan & Xiaorong You & Lianbo Deng, 2019. "Demand-Oriented Train Timetabling Integrated with Passenger Train-Booking Decisions," Sustainability, MDPI, vol. 11(18), pages 1-34, September.
    8. Wang, Hongyang & Yang, Lixing & Zhang, Jinlei & Luo, Qin & Fan, Zhongsheng, 2024. "Real-time train timetabling with virtual coupling operations on a Y-type metro line," European Journal of Operational Research, Elsevier, vol. 319(1), pages 168-190.
    9. Hu, Yuting & Li, Shukai & Dessouky, Maged M. & Yang, Lixing & Gao, Ziyou, 2022. "Computationally efficient train timetable generation of metro networks with uncertain transfer walking time to reduce passenger waiting time: A generalized Benders decomposition-based method," Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 210-231.
    10. Yin, Jiateng & Pu, Fan & Yang, Lixing & D’Ariano, Andrea & Wang, Zhouhong, 2023. "Integrated optimization of rolling stock allocation and train timetables for urban rail transit networks: A benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    11. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    12. Yuan, Jiawei & Gao, Yuan & Li, Shukai & Liu, Pei & Yang, Lixing, 2022. "Integrated optimization of train timetable, rolling stock assignment and short-turning strategy for a metro line," European Journal of Operational Research, Elsevier, vol. 301(3), pages 855-874.
    13. Zhang, Di & Gao, Yuan & Yang, Lixing & Cui, Lixin, 2024. "Timetable synchronization of the last several trains at night in an urban rail transit network," European Journal of Operational Research, Elsevier, vol. 313(2), pages 494-512.
    14. Shuo Zhao & Jinfei Wu & Zhenyi Li & Ge Meng, 2022. "Train Operational Plan Optimization for Urban Rail Transit Lines Considering Circulation Balance," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    15. Zhen Di & Hanqi Zuo & Housheng Zhou & Jianguo Qi & Shenghu Zhang, 2025. "Integrated Optimization of Train Schedules and Transportation Plans for a Passenger–Freight Metro Line," Sustainability, MDPI, vol. 17(2), pages 1-18, January.
    16. Kang, Liujiang & Li, Hao & Sun, Huijun & Wu, Jianjun & Cao, Zhiguang & Buhigiro, Nsabimana, 2021. "First train timetabling and bus service bridging in intermodal bus-and-train transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 443-462.
    17. Yuan, Yin & Li, Shukai & Yang, Lixing & Gao, Ziyou, 2022. "Real-time optimization of train regulation and passenger flow control for urban rail transit network under frequent disturbances," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    18. Pan, Hanchuan & Yang, Lixing & Liang, Zhe, 2023. "Demand-oriented integration optimization of train timetabling and rolling stock circulation planning with flexible train compositions: A column-generation-based approach," European Journal of Operational Research, Elsevier, vol. 305(1), pages 184-206.
    19. Xu, Xiaoming & Li, Chung-Lun & Xu, Zhou, 2021. "Train timetabling with stop-skipping, passenger flow, and platform choice considerations," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 52-74.
    20. Liu, Renming & Li, Shukai & Yang, Lixing, 2020. "Collaborative optimization for metro train scheduling and train connections combined with passenger flow control strategy," Omega, Elsevier, vol. 90(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2654-:d:1727051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.