Author
Listed:
- Jing Han
(China Aluminum Ningxia Energy Group Co., Ltd., Yinchuan 750004, China
School of Automation, Central South University, Changsha 410083, China)
- Yaolin Dong
(School of Automation, Central South University, Changsha 410083, China)
- Wei Wang
(School of Automation, Central South University, Changsha 410083, China)
Abstract
The State of Charge (SOC) is vital for battery system management. Enhancing SOC estimation boosts system performance. This paper presents a combined framework that improves SOC estimation’s accuracy and stability for electric vehicles. The framework combines a Long Short-Term Memory (LSTM) network with an Adaptive Unscented Kalman Filter (AUKF). An Improved Arithmetic Optimization Algorithm (IAOA) fine-tunes the LSTM’s hyperparameters. Its novelty lies in its adaptive iteration algorithm, which adjusts iterations based on a threshold, optimizing computational efficiency. It also integrates a genetic mutation strategy into the AOA to overcome local optima by mutating iterations. Additionally, the AUKF’s adaptive noise algorithm updates noise covariance in real-time, enhancing SOC estimation precision. The inputs of the proposed method include battery current, voltage, and temperature, then producing an accurate SOC output. The predictions of LSTM are refined through AUKF to obtain reliable SOC estimation. The proposed framework is firstly evaluated utilizing a public dataset and then applied to battery packs on actual engineering vehicles. Results indicate that the Root Mean Square Errors (RMSEs) of the SOC estimations in practical applications are below 0.6%, and the Maximum Errors (MAX) are under 3.3%, demonstrating the accuracy and robustness of the proposed combined framework.
Suggested Citation
Jing Han & Yaolin Dong & Wei Wang, 2025.
"Combined Framework for State of Charge Estimation of Lithium-Ion Batteries: Optimized LSTM Network Integrated with IAOA and AUKF,"
Mathematics, MDPI, vol. 13(16), pages 1-20, August.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:16:p:2590-:d:1723593
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:16:p:2590-:d:1723593. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.