IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p1999-d1680966.html
   My bibliography  Save this article

Multi-Agent Deep Reinforcement Learning for Scheduling of Energy Storage System in Microgrids

Author

Listed:
  • Sang-Woo Jung

    (Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34143, Republic of Korea)

  • Yoon-Young An

    (ICT Convergence Standards Research Division, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea)

  • BeomKyu Suh

    (Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34143, Republic of Korea)

  • YongBeom Park

    (Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34143, Republic of Korea)

  • Jian Kim

    (Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34143, Republic of Korea)

  • Ki-Il Kim

    (Department of Computer Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34143, Republic of Korea)

Abstract

Efficient scheduling of Energy Storage Systems (ESS) within microgrids has emerged as a critical issue to ensure energy cost reduction, peak shaving, and battery health management. For ESS scheduling, both single-agent and multi-agent deep reinforcement learning (DRL) approaches have been explored. However, the former has suffered from scalability to include multiple objectives while the latter lacks comprehensive consideration of diverse user objectives. To defeat the above issues, in this paper, we propose a new DRL-based scheduling algorithm using a multi-agent proximal policy optimization (MAPPO) framework that is combined with Pareto optimization. The proposed model employs two independent agents: one is to minimize electricity costs and the other does charge/discharge switching frequency to account for battery degradation. The candidate actions generated by the agents are evaluated through Pareto dominance, and the final action is selected via scalarization-reflecting operator-defined preferences. The simulation experiments were conducted using real industrial building load and photovoltaic (PV) generation data under realistic South Korean electricity tariff structures. The comparative evaluations against baseline DRL algorithms (TD3, SAC, PPO) demonstrate that the proposed MAPPO method significantly reduces electricity costs while minimizing battery-switching events. Furthermore, the results highlight that the proposed method achieves a balanced improvement in both economic efficiency and battery longevity, making it highly applicable to real-world dynamic microgrid environments. Specifically, the proposed MAPPO-based scheduling achieved a total electricity cost reduction of 14.68% compared to the No-ESS case and achieved 3.56% greater cost savings than other baseline reinforcement learning algorithms.

Suggested Citation

  • Sang-Woo Jung & Yoon-Young An & BeomKyu Suh & YongBeom Park & Jian Kim & Ki-Il Kim, 2025. "Multi-Agent Deep Reinforcement Learning for Scheduling of Energy Storage System in Microgrids," Mathematics, MDPI, vol. 13(12), pages 1-24, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1999-:d:1680966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/1999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/1999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Gaoyuan & Shi, Jian & Wu, Jiaman & Lu, Chenbei & Wu, Chenye & Wang, Dan & Han, Zhu, 2024. "An optimal solutions-guided deep reinforcement learning approach for online energy storage control," Applied Energy, Elsevier, vol. 361(C).
    2. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    3. Tianrui Zhang & Weibo Zhao & Quanfeng He & Jianan Xu, 2025. "Optimization of Microgrid Dispatching by Integrating Photovoltaic Power Generation Forecast," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
    4. Sinsel, Simon R. & Riemke, Rhea L. & Hoffmann, Volker H., 2020. "Challenges and solution technologies for the integration of variable renewable energy sources—a review," Renewable Energy, Elsevier, vol. 145(C), pages 2271-2285.
    5. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    6. Moonjong Jang & Ho-Jin Choi & Chae-Gyun Lim & Byoungwoong An & Jungsub Sim, 2022. "Optimization of ESS Scheduling for Cost Reduction in Commercial and Industry Customers in Korea," Sustainability, MDPI, vol. 14(6), pages 1-16, March.
    7. Luqin Fan & Jing Zhang & Yu He & Ying Liu & Tao Hu & Heng Zhang, 2021. "Optimal Scheduling of Microgrid Based on Deep Deterministic Policy Gradient and Transfer Learning," Energies, MDPI, vol. 14(3), pages 1-15, January.
    8. Kim, Wook-Won & Shin, Je-Seok & Kim, Sung-Yul & Kim, Jin-O., 2017. "Operation scheduling for an energy storage system considering reliability and aging," Energy, Elsevier, vol. 141(C), pages 389-397.
    9. Pinciroli, Luca & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2023. "Optimal operation and maintenance of energy storage systems in grid-connected microgrids by deep reinforcement learning," Applied Energy, Elsevier, vol. 352(C).
    10. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Han & Yaolin Dong & Wei Wang, 2025. "Combined Framework for State of Charge Estimation of Lithium-Ion Batteries: Optimized LSTM Network Integrated with IAOA and AUKF," Mathematics, MDPI, vol. 13(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdal Irmak & Ersan Kabalci & Yasin Kabalci, 2023. "Digital Transformation of Microgrids: A Review of Design, Operation, Optimization, and Cybersecurity," Energies, MDPI, vol. 16(12), pages 1-58, June.
    2. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    3. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    4. Wang, Mingtao & Zhang, Juan & Liu, Huanwei, 2022. "Thermodynamic analysis and optimization of two low-grade energy driven transcritical CO2 combined cooling, heating and power systems," Energy, Elsevier, vol. 249(C).
    5. Bruno Cárdenas & Lawrie Swinfen-Styles & James Rouse & Seamus D. Garvey, 2021. "Short-, Medium-, and Long-Duration Energy Storage in a 100% Renewable Electricity Grid: A UK Case Study," Energies, MDPI, vol. 14(24), pages 1-28, December.
    6. Li, Haoran & Zhang, Chenghui & Sun, Bo, 2021. "Optimal design for component capacity of integrated energy system based on the active dispatch mode of multiple energy storages," Energy, Elsevier, vol. 227(C).
    7. Julien Walzberg & Annika Eberle, 2023. "Modeling Systems’ Disruption and Social Acceptance—A Proof-of-Concept Leveraging Reinforcement Learning," Sustainability, MDPI, vol. 15(13), pages 1-13, June.
    8. Shah Rukh Abbas & Syed Ali Abbas Kazmi & Muhammad Naqvi & Adeel Javed & Salman Raza Naqvi & Kafait Ullah & Tauseef-ur-Rehman Khan & Dong Ryeol Shin, 2020. "Impact Analysis of Large-Scale Wind Farms Integration in Weak Transmission Grid from Technical Perspectives," Energies, MDPI, vol. 13(20), pages 1-32, October.
    9. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    10. Reguieg, Zakaria & Bouyakoub, Ismail & Mehedi, Fayçal, 2025. "Integrated optimization of power quality and energy management in a photovoltaic-battery microgrid," Renewable Energy, Elsevier, vol. 241(C).
    11. Sifat, Md. Mhamud Hussen & Choudhury, Safwat Mukarrama & Das, Sajal K. & Pota, Hemanshu & Yang, Fuwen, 2025. "Novel abstractions and experimental validation for digital twin microgrid design: Lab scale studies and large scale proposals," Applied Energy, Elsevier, vol. 377(PC).
    12. Melendez, Kevin A. & Matamala, Yolanda, 2025. "Adversarial attacks in demand-side electricity markets," Applied Energy, Elsevier, vol. 377(PD).
    13. Yinhe Bu & Xingping Zhang, 2021. "On the Way to Integrate Increasing Shares of Variable Renewables in China: Experience from Flexibility Modification and Deep Peak Regulation Ancillary Service Market Based on MILP-UC Programming," Sustainability, MDPI, vol. 13(5), pages 1-22, February.
    14. Dominik Latoń & Jakub Grela & Andrzej Ożadowicz, 2024. "Applications of Deep Reinforcement Learning for Home Energy Management Systems: A Review," Energies, MDPI, vol. 17(24), pages 1-30, December.
    15. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Wang, Kai & Peng, Jinqing & Li, Sihui & Li, Houpei & Zou, Bin & Ma, Tao & Ji, Jie, 2024. "Compressor speed control for optimizing energy matching of PV-driven AC systems during the cooling season," Energy, Elsevier, vol. 298(C).
    17. Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
    18. Hamilton, James & Negnevitsky, Michael & Wang, Xiaolin, 2022. "The role of modified diesel generation within isolated power systems," Energy, Elsevier, vol. 240(C).
    19. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    20. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:1999-:d:1680966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.