IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v324y2025ics0360544225016858.html
   My bibliography  Save this article

Revealing the impact of extreme temperatures and dynamic conditions on thermal safety of NCA/Si-graphite battery

Author

Listed:
  • He, Rong
  • Guo, Bin
  • Li, Yalun
  • Yang, Shichun

Abstract

The thermal safety of lithium-ion batteries continues to pose a significant challenge for electric vehicle (EV) applications. Given the complex aging processes of batteries under extreme temperatures and dynamic conditions, accurately predicting and preventing thermal runaway (TR) is of critical importance. In this study, a cyclic aging test simulating equivalent vehicle operating conditions was first conducted for NCA/Si-graphite battery, followed by an overheating-induced TR test. This research quantitatively analyzes the evolution of TR criticality with respect to heating power, state of charge (SOC), and temperature, both before and after battery aging. It was observed that separator melting does not coincide with the occurrence of an internal short circuit or TR. Furthermore, differential scanning calorimetry (DSC) tests were employed to evaluate the thermal stability of battery components and to elucidate the influence of aging mechanisms on TR behavior. The results indicate that the exothermic reactions between the anode-electrolyte and cathode-anode materials constitute the primary heat source during battery TR. Aging-induced side effects, such as solid electrolyte interphase growth and lithium deposition, were found to significantly impact the TR trigger time. A novel mechanism of TR, driven by the reaction between intercalated lithium and the electrolyte, is revealed. The findings of this study provide valuable insights for advancing research on battery design and development, TR prevention strategies, and battery management systems.

Suggested Citation

  • He, Rong & Guo, Bin & Li, Yalun & Yang, Shichun, 2025. "Revealing the impact of extreme temperatures and dynamic conditions on thermal safety of NCA/Si-graphite battery," Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016858
    DOI: 10.1016/j.energy.2025.136043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544225016858
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2025.136043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Xuning & Zheng, Siqi & Ren, Dongsheng & He, Xiangming & Wang, Li & Cui, Hao & Liu, Xiang & Jin, Changyong & Zhang, Fangshu & Xu, Chengshan & Hsu, Hungjen & Gao, Shang & Chen, Tianyu & Li, Yalun , 2019. "Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database," Applied Energy, Elsevier, vol. 246(C), pages 53-64.
    2. Wei, Meng & Ye, Min & Zhang, Chuanwei & Wang, Qiao & Lian, Gaoqi & Xia, Baozhou, 2024. "Integrating mechanism and machine learning based capacity estimation for LiFePO4 batteries under slight overcharge cycling," Energy, Elsevier, vol. 296(C).
    3. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuhui, Wang & Zhenpo, Wang & Zhaosheng, Zhang & Ximing, Cheng, 2025. "Fault cause inferences of onboard lithium-ion battery thermal runaway using convolutional neural network," Energy, Elsevier, vol. 320(C).
    2. Zhou, Zhizuan & Li, Maoyu & Zhou, Xiaodong & Li, Lun & Ju, Xiaoyu & Yang, Lizhong, 2024. "Investigating thermal runaway triggering mechanism of the prismatic lithium iron phosphate battery under thermal abuse," Renewable Energy, Elsevier, vol. 220(C).
    3. Guo, Zixin & Ma, Zhichao & Zhao, Wenyang & Wang, Shenghui & Zhao, Hongwei & Ren, Luquan, 2025. "Quantitative investigation on the overcharge cycling-induced severe degradation of electrochemical and mechanical properties of lithium-ion battery cells," Energy, Elsevier, vol. 318(C).
    4. Ting Quan & Qi Xia & Xiaoyu Wei & Yanli Zhu, 2024. "Recent Development of Thermal Insulating Materials for Li-Ion Batteries," Energies, MDPI, vol. 17(17), pages 1-37, September.
    5. Yuqing Chen & Qiu He & Yun Zhao & Wang Zhou & Peitao Xiao & Peng Gao & Naser Tavajohi & Jian Tu & Baohua Li & Xiangming He & Lidan Xing & Xiulin Fan & Jilei Liu, 2023. "Breaking solvation dominance of ethylene carbonate via molecular charge engineering enables lower temperature battery," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    6. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    7. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    8. Jin, Changyong & Sun, Yuedong & Wang, Huaibin & Zheng, Yuejiu & Wang, Shuyu & Rui, Xinyu & Xu, Chengshan & Feng, Xuning & Wang, Hewu & Ouyang, Minggao, 2022. "Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling," Applied Energy, Elsevier, vol. 312(C).
    9. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & GarcĂ­a, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    10. Hu, Dunan & Huang, Sheng & Wen, Zhen & Gu, Xiuquan & Lu, Jianguo, 2024. "A review on thermal runaway warning technology for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    11. Li, Yichao & Ma, Chen & Liu, Kailong & Chang, Long & Zhang, Chenghui & Duan, Bin, 2024. "A novel joint estimation for core temperature and state of charge of lithium-ion battery based on classification approach and convolutional neural network," Energy, Elsevier, vol. 308(C).
    12. Suparat Jamsawang & Saharat Chanthanumataporn & Kittiwoot Sutthivirode & Tongchana Thongtip, 2024. "Investigation of the Performance of Battery Thermal Management Based on Direct Refrigerant Cooling: Simulation, Validation of Results, and Parametric Studies," Energies, MDPI, vol. 17(2), pages 1-24, January.
    13. Christensen, Paul A. & Anderson, Paul A. & Harper, Gavin D.J. & Lambert, Simon M. & Mrozik, Wojciech & Rajaeifar, Mohammad Ali & Wise, Malcolm S. & Heidrich, Oliver, 2021. "Risk management over the life cycle of lithium-ion batteries in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Yi, Yahui & Xia, Chengyu & Shi, Lei & Meng, Leifeng & Chi, Qifu & Qian, Liqin & Ma, Tiancai & Chen, Siqi, 2024. "Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics," Energy, Elsevier, vol. 292(C).
    15. Zhang, Liwen & Zhao, Peng & Xu, Meng & Wang, Xia, 2020. "Computational identification of the safety regime of Li-ion battery thermal runaway," Applied Energy, Elsevier, vol. 261(C).
    16. Hong, Jichao & Zhang, Tiezhu & Zhang, Zhen & Zhang, Hongxin, 2023. "Investigation of energy management strategy for a novel electric-hydraulic hybrid vehicle: Self-adaptive electric-hydraulic ratio," Energy, Elsevier, vol. 278(C).
    17. Zhang, Jiangyun & Shao, Dan & Jiang, Liqin & Zhang, Guoqing & Wu, Hongwei & Day, Rodney & Jiang, Wenzhao, 2022. "Advanced thermal management system driven by phase change materials for power lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Wang, Can & Wang, Renjie & Zhang, Chengming & Yu, Quanqing, 2024. "Coupling effect of state of charge and loading rate on internal short circuit of lithium-ion batteries induced by mechanical abuse," Applied Energy, Elsevier, vol. 375(C).
    19. Chen, Long & Li, Kuijie & Cao, Yuan-cheng & Feng, Xuning & Wu, Weixiong, 2025. "Multidimensional signal fusion strategy for battery thermal runaway warning towards multiple application scenarios," Applied Energy, Elsevier, vol. 377(PB).
    20. Liu, Lishuo & Feng, Xuning & Zhang, Mingxuan & Lu, Languang & Han, Xuebing & He, Xiangming & Ouyang, Minggao, 2020. "Comparative study on substitute triggering approaches for internal short circuit in lithium-ion batteries," Applied Energy, Elsevier, vol. 259(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:324:y:2025:i:c:s0360544225016858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.