IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224003128.html
   My bibliography  Save this article

Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics

Author

Listed:
  • Yi, Yahui
  • Xia, Chengyu
  • Shi, Lei
  • Meng, Leifeng
  • Chi, Qifu
  • Qian, Liqin
  • Ma, Tiancai
  • Chen, Siqi

Abstract

Lithium-ion battery (LIB) thickness variation due to its expansion behaviors during cycling significantly affects battery performance, lifespan, and safety. This study establishes a three-dimensional electrochemical-thermal-mechanical coupling model to investigate the impacts of thermal expansion and particle intercalation on LIB thickness variation, respectively. Results indicate that thickness variation induced by particle intercalation predominantly determines LIB expansion behavior, contributing to 92 % of the observed thickness variation. Moreover, the expansion behavior of LIBs across the entire state of charge (SOC) ranges can be categorized into four stages based on the expansion rate, with turning points closely correlating with the positions of peaks in the Incremental Capacity (IC) curve. This phenomenon underscores the nuanced relationship between LIB thickness variation characteristics and SOC. Consequently, this study proposes a novel SOC estimation approach based on Gaussian regression processes utilizing expansion behavior and voltage characteristics. The experimental results indicate that the maximum error does not exceed 0.0076, and the root mean square error (RMSE) remains within 0.0018 for the constant charging/discharging conditions under different current rates. This research provides guidance for expansion mechanism investigation and SOC estimation optimization.

Suggested Citation

  • Yi, Yahui & Xia, Chengyu & Shi, Lei & Meng, Leifeng & Chi, Qifu & Qian, Liqin & Ma, Tiancai & Chen, Siqi, 2024. "Lithium-ion battery expansion mechanism and Gaussian process regression based state of charge estimation with expansion characteristics," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003128
    DOI: 10.1016/j.energy.2024.130541
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224003128
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130541?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224003128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.