IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i13p2128-d1690359.html
   My bibliography  Save this article

Markov Observation Models and Deepfakes

Author

Listed:
  • Michael A. Kouritzin

    (Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada)

Abstract

Herein, expanded Hidden Markov Models (HMMs) are considered as potential deepfake generation and detection tools. The most specific model is the HMM, while the most general is the pairwise Markov chain (PMC). In between, the Markov observation model (MOM) is proposed, where the observations form a Markov chain conditionally on the hidden state. An expectation-maximization (EM) analog to the Baum–Welch algorithm is developed to estimate the transition probabilities as well as the initial hidden-state-observation joint distribution for all the models considered. This new EM algorithm also includes a recursive log-likelihood equation so that model selection can be performed (after parameter convergence). Once models have been learnt through the EM algorithm, deepfakes are generated through simulation, while they are detected using the log-likelihood. Our three models were compared empirically in terms of their generative and detective ability. PMC and MOM consistently produced the best deepfake generator and detector, respectively.

Suggested Citation

  • Michael A. Kouritzin, 2025. "Markov Observation Models and Deepfakes," Mathematics, MDPI, vol. 13(13), pages 1-25, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2128-:d:1690359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/13/2128/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/13/2128/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kloek, Tuen & van Dijk, Herman K, 1978. "Bayesian Estimates of Equation System Parameters: An Application of Integration by Monte Carlo," Econometrica, Econometric Society, vol. 46(1), pages 1-19, January.
    2. Date, Paresh & Mamon, Rogemar & Tenyakov, Anton, 2013. "Filtering and forecasting commodity futures prices under an HMM framework," Energy Economics, Elsevier, vol. 40(C), pages 1001-1013.
    3. Derrode, Stéphane & Pieczynski, Wojciech, 2013. "Unsupervised data classification using pairwise Markov chains with automatic copulas selection," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 81-98.
    4. Kristi Kuljus & Jüri Lember, 2023. "Pairwise Markov Models and Hybrid Segmentation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-32, June.
    5. Kouritzin, Michael A. & Long, Hongwei, 2008. "On extending classical filtering equations," Statistics & Probability Letters, Elsevier, vol. 78(18), pages 3195-3202, December.
    6. Drew Creal, 2012. "A Survey of Sequential Monte Carlo Methods for Economics and Finance," Econometric Reviews, Taylor & Francis Journals, vol. 31(3), pages 245-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    2. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Palm, F.C. & Sneek, J.M., 1981. "Some econometric applications of the exact distribution of the ratio of two quadratic forms in normal variates," Serie Research Memoranda 0018, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    5. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    6. James A. Chalfant & Richard S. Gray & Kenneth J. White, 1991. "Evaluating Prior Beliefs in a Demand System: The Case of Meat Demand in Canada," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(2), pages 476-490.
    7. Ioannis Bournakis & Mike Tsionas, 2024. "A Non‐parametric Estimation of Productivity with Idiosyncratic and Aggregate Shocks: The Role of Research and Development (R&D) and Corporate Tax," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 86(3), pages 641-671, June.
    8. Hajargasht, Gholamreza & Rao, D.S. Prasada, 2019. "Multilateral index number systems for international price comparisons: Properties, existence and uniqueness," Journal of Mathematical Economics, Elsevier, vol. 83(C), pages 36-47.
    9. Cranfield, John A.L. & Preckel, Paul V. & Liu, Songquan, 1997. "Approximating Bayesian Posteriors using Multivariate Gaussian Quadrature," 1997 Annual Meeting, July 13-16, 1997, Reno\ Sparks, Nevada 35791, Western Agricultural Economics Association.
    10. S. Bogan Aruoba & Pablo Cuba-Borda & Kenji Higa-Flores & Frank Schorfheide & Sergio Villalvazo, 2021. "Piecewise-Linear Approximations and Filtering for DSGE Models with Occasionally Binding Constraints," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 41, pages 96-120, July.
    11. Jilong Chen & Christian Ewald & Ruolan Ouyang & Sjur Westgaard & Xiaoxia Xiao, 2022. "Pricing commodity futures and determining risk premia in a three factor model with stochastic volatility: the case of Brent crude oil," Annals of Operations Research, Springer, vol. 313(1), pages 29-46, June.
    12. Arellano, Manuel & Blundell, Richard & Bonhomme, Stéphane & Light, Jack, 2024. "Heterogeneity of consumption responses to income shocks in the presence of nonlinear persistence," Journal of Econometrics, Elsevier, vol. 240(2).
    13. O. Samimi & Z. Mardani & S. Sharafpour & F. Mehrdoust, 2017. "LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model," Computational Economics, Springer;Society for Computational Economics, vol. 50(2), pages 173-187, August.
    14. Ardia, David & Hoogerheide, Lennart F., 2010. "Efficient Bayesian estimation and combination of GARCH-type models," MPRA Paper 22919, University Library of Munich, Germany.
    15. Gorynin, Ivan & Derrode, Stéphane & Monfrini, Emmanuel & Pieczynski, Wojciech, 2017. "Fast smoothing in switching approximations of non-linear and non-Gaussian models," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 38-46.
    16. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    17. Shigeru Iwata & Evan Tanner, 2007. "Pick Your Poison: The Exchange Rate Regime and Capital Account Volatility in Emerging Markets," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 57(7-8), pages 363-381, September.
    18. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    19. Babula, Ronald A. & Bessler, David A. & Schluter, Gerald E., 1990. "Poultry-Related Price Transmissions and Structural Change Since the 1950's," Journal of Agricultural Economics Research, United States Department of Agriculture, Economic Research Service, vol. 42(02), pages 1-9.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:13:p:2128-:d:1690359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.