IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p2003-d1681259.html
   My bibliography  Save this article

A Semi-Parametric KDE-GPD Model for Earthquake Magnitude Analysis

Author

Listed:
  • Yanfang Zhang

    (College of Science, Institute of Disaster Prevention, Langfang 065201, China)

  • Yibin Zhao

    (College of Science, Institute of Disaster Prevention, Langfang 065201, China)

  • Fuchang Wang

    (College of Science, Institute of Disaster Prevention, Langfang 065201, China)

Abstract

A semi-parametric mixture model, combining kernel density estimation (KDE) and the generalized Pareto distribution (GPD), is applied to analyze the statistical characteristics of earthquake magnitudes. Data below a threshold are fitted using KDE, while data above the threshold are modeled using the GPD. Both the kernel bandwidth and the threshold are directly estimable as parameters. An estimation method based on the empirical distribution function (EDF) and maximum likelihood estimation (MLE) is used to estimate the parameters of the mixture model. The application of this model to earthquake magnitude analysis offers insights for seismic hazard assessment.

Suggested Citation

  • Yanfang Zhang & Yibin Zhao & Fuchang Wang, 2025. "A Semi-Parametric KDE-GPD Model for Earthquake Magnitude Analysis," Mathematics, MDPI, vol. 13(12), pages 1-17, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:2003-:d:1681259
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/2003/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/2003/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davies, Richard B., 1993. "Nonparametric control for residual heterogeneity in modelling recurrent behaviour," Computational Statistics & Data Analysis, Elsevier, vol. 16(2), pages 143-160, August.
    2. Mian Huang & Weixin Yao, 2012. "Mixture of Regression Models With Varying Mixing Proportions: A Semiparametric Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 711-724, June.
    3. MacDonald, A. & Scarrott, C.J. & Lee, D. & Darlow, B. & Reale, M. & Russell, G., 2011. "A flexible extreme value mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2137-2157, June.
    4. Heckman, James & Singer, Burton, 1984. "A Method for Minimizing the Impact of Distributional Assumptions in Econometric Models for Duration Data," Econometrica, Econometric Society, vol. 52(2), pages 271-320, March.
    5. Song, Seongjoo & Nicolae, Dan L. & Song, Jongwoo, 2010. "Estimating the mixing proportion in a semiparametric mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2276-2283, October.
    6. Laurent Bordes & Céline Delmas & Pierre Vandekerkhove, 2006. "Semiparametric Estimation of a Two‐component Mixture Model where One Component is known," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 733-752, December.
    7. Young, D.S. & Hunter, D.R., 2010. "Mixtures of regressions with predictor-dependent mixing proportions," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2253-2266, October.
    8. Peter Hall & Amnon Neeman & Reza Pakyari & Ryan Elmore, 2005. "Nonparametric inference in multivariate mixtures," Biometrika, Biometrika Trust, vol. 92(3), pages 667-678, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao, Weixin & Wei, Yan & Yu, Chun, 2014. "Robust mixture regression using the t-distribution," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 116-127.
    2. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2016. "Non-parametric estimation of finite mixtures from repeated measurements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 211-229, January.
    3. Xue, Jiacheng & Yao, Weixin, 2022. "Machine Learning Embedded Semiparametric Mixtures of Regressions with Covariate-Varying Mixing Proportions," Econometrics and Statistics, Elsevier, vol. 22(C), pages 159-171.
    4. Áureo de Paula, 2013. "Econometric Analysis of Games with Multiple Equilibria," Annual Review of Economics, Annual Reviews, vol. 5(1), pages 107-131, May.
    5. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    6. Marco Alfò & Giovanni Trovato, 2004. "Semiparametric Mixture Models for Multivariate Count Data, with Application," CEIS Research Paper 51, Tor Vergata University, CEIS.
    7. repec:spo:wpmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    8. Hiroyuki Kasahara & Katsumi Shimotsu, 2006. "Nonparametric Identification And Estimation Of Finite Mixture Models Of Dynamic Discrete Choices," Working Paper 1092, Economics Department, Queen's University.
    9. Sijia Xiang & Weixin Yao, 2018. "Semiparametric mixtures of nonparametric regressions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(1), pages 131-154, February.
    10. Yuzhu Tian & Manlai Tang & Maozai Tian, 2016. "A class of finite mixture of quantile regressions with its applications," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(7), pages 1240-1252, July.
    11. Marco Alfò & Cecilia Vitiello, 2003. "Finite mixtures approach to ecological regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 12(1), pages 93-108, February.
    12. Marco Berrettini & Giuliano Galimberti & Saverio Ranciati, 2023. "Semiparametric finite mixture of regression models with Bayesian P-splines," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 745-775, September.
    13. Anders Holm & Mads Meier Jæger & Morten Pedersen, 2008. "Unobserved Heterogeneity in the Binary Logit Model with Cross-Sectional Data and Short Panels: A Finite Mixture Approach," CAM Working Papers 2009-04, University of Copenhagen. Department of Economics. Centre for Applied Microeconometrics.
    14. Jiacheng Xue & Weixin Yao & Sijia Xiang, 2025. "Machine learning embedded EM algorithms for semiparametric mixture regression models," Computational Statistics, Springer, vol. 40(1), pages 205-224, January.
    15. Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
    16. Sijia Xiang & Weixin Yao, 2020. "Semiparametric mixtures of regressions with single-index for model based clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 261-292, June.
    17. Wang, Shaoli & Yao, Weixin & Huang, Mian, 2014. "A note on the identifiability of nonparametric and semiparametric mixtures of GLMs," Statistics & Probability Letters, Elsevier, vol. 93(C), pages 41-45.
    18. Kemptner, Daniel & Tolan, Songül, 2018. "The role of time preferences in educational decision making," Economics of Education Review, Elsevier, vol. 67(C), pages 25-39.
    19. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    20. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    21. Insoo Cho & Peter F. Orazem, 2021. "How endogenous risk preferences and sample selection affect analysis of firm survival," Small Business Economics, Springer, vol. 56(4), pages 1309-1332, April.
    22. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:2003-:d:1681259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.