IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i11p1893-d1672652.html
   My bibliography  Save this article

Linear Trend, HP Trend, and bHP Trend

Author

Listed:
  • Hiroshi Yamada

    (Graduate School of Humanities and Social Sciences, Hiroshima University, 1-2-1 Kagamiyama, Higashihiroshima 739-8525, Japan)

Abstract

The modelling of the trend component of economic time series has a long history, and the most primitive and popular model displays the trend as a linear function of time. However, the residuals of such a linear trend frequently exhibit long-period fluctuations. The Hodrick–Prescott (HP) filter is able to capture such long-period fluctuations well, resulting in a very realistic trend-cycle decomposition. It may be queried whether the HP trend residuals no longer contain useful long-period fluctuations. If such long-period fluctuations are present, then taking them into consideration could improve the HP trend. In a recent article, a new approach to address this issue, the boosted HP (bHP) filter, was proposed. The three trends mentioned above, i.e., the linear trend, the HP trend, and the bHP trend, can be treated in a unified manner. In this paper, we demonstrate the relationship in detail. We show how the bHP trend is constructed from the linear/HP trend, and long-period fluctuations remained in their trend residuals.

Suggested Citation

  • Hiroshi Yamada, 2025. "Linear Trend, HP Trend, and bHP Trend," Mathematics, MDPI, vol. 13(11), pages 1-15, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1893-:d:1672652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/11/1893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/11/1893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    2. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.
    3. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
    4. Peter C. B. Phillips & Sainan Jin, 2021. "Business Cycles, Trend Elimination, And The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 469-520, May.
    5. Xu, Can, 2023. "Do households react to policy uncertainty by increasing savings?," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 770-785.
    6. James C. Morley & Charles R. Nelson & Eric Zivot, 2003. "Why Are the Beveridge-Nelson and Unobserved-Components Decompositions of GDP So Different?," The Review of Economics and Statistics, MIT Press, vol. 85(2), pages 235-243, May.
    7. Mateusz Tomal, 2022. "Testing for overall and cluster convergence of housing rents using robust methodology: evidence from Polish provincial capitals," Empirical Economics, Springer, vol. 62(4), pages 2023-2055, April.
    8. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    9. Danthine, Jean-Pierre & Girardin, Michel, 1989. "Business cycles in Switzerland : A comparative study," European Economic Review, Elsevier, vol. 33(1), pages 31-50, January.
    10. Zihan Jin & Hiroshi Yamada, 2024. "Boosted Whittaker–Henderson Graduation," Mathematics, MDPI, vol. 12(21), pages 1-18, October.
    11. Weinert, Howard L., 2007. "Efficient computation for Whittaker-Henderson smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 959-974, October.
    12. Hiroshi Yamada, 2018. "Why does the trend extracted by the Hodrick–Prescott filtering seem to be more plausible than the linear trend?," Applied Economics Letters, Taylor & Francis Journals, vol. 25(2), pages 102-105, January.
    13. Tutz, Gerhard & Binder, Harald, 2007. "Boosting ridge regression," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6044-6059, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viv B. Hall & Peter Thomson, 2021. "Does Hamilton’s OLS Regression Provide a “better alternative” to the Hodrick-Prescott Filter? A New Zealand Business Cycle Perspective," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 151-183, November.
    2. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    3. Yves Schueler, 2024. "Filtering economic time series: On the cyclical properties of Hamilton’s regression filter and the Hodrick-Prescott filter," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 54, October.
    4. Hiroshi Yamada, 2023. "Quantile regression version of Hodrick–Prescott filter," Empirical Economics, Springer, vol. 64(4), pages 1631-1645, April.
    5. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
    6. Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2024. "The boosted Hodrick‐Prescott filter is more general than you might think," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1260-1281, November.
    7. Fukuda, Kosei, 2012. "Illustrating extraordinary shocks causing trend breaks," Economic Modelling, Elsevier, vol. 29(4), pages 1045-1052.
    8. Dilip Nachane & Aditi Chaubal, 2022. "A Comparative Evaluation of Some DSP Filters vis-à-vis Commonly Used Economic Filters," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 161-190, September.
    9. Kamber, Güneş & Morley, James & Wong, Benjamin, 2025. "Trend-cycle decomposition in the presence of large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 173(C).
    10. Ruixue Du & Hiroshi Yamada, 2020. "Principle of Duality in Cubic Smoothing Spline," Mathematics, MDPI, vol. 8(10), pages 1-19, October.
    11. L.A. Gil-Alana, 2005. "Fractional Cyclical Structures & Business Cycles in the Specification of the US Real Output," European Research Studies Journal, European Research Studies Journal, vol. 0(1-2), pages 99-126.
    12. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    13. Caldana, Ruggero & Fusai, Gianluca & Roncoroni, Andrea, 2017. "Electricity forward curves with thin granularity: Theory and empirical evidence in the hourly EPEXspot market," European Journal of Operational Research, Elsevier, vol. 261(2), pages 715-734.
    14. Peter Brandner & Klaus Neusser, 1992. "Business cycles in open economies: Stylized facts for Austria and Germany," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 128(1), pages 67-87, March.
    15. Blonigen, Bruce A. & Piger, Jeremy & Sly, Nicholas, 2014. "Comovement in GDP trends and cycles among trading partners," Journal of International Economics, Elsevier, vol. 94(2), pages 239-247.
    16. Fritz, Marlon, 2019. "Steady state adjusting trends using a data-driven local polynomial regression," Economic Modelling, Elsevier, vol. 83(C), pages 312-325.
    17. Haitham A. Al-Zoubi, 2024. "An affine model for short rates when monetary policy is path dependent," Review of Derivatives Research, Springer, vol. 27(2), pages 151-201, July.
    18. Panizza, Ugo, 2025. "Do countries default in bad times? The role of alternative detrending techniques," Economics Letters, Elsevier, vol. 246(C).
    19. Wolfgang Polasek, 2012. "MCMC Estimation of Extended Hodrick-Prescott (HP) Filtering Models," DANUBE: Law and Economics Review, European Association Comenius - EACO, issue 1, pages 25-52, March.
    20. Peter C. B. Phillips & Zhentao Shi, 2021. "Boosting: Why You Can Use The Hp Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 62(2), pages 521-570, May.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:11:p:1893-:d:1672652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.