A Novel Forecasting Framework for Carbon Emission Trading Price Based on Nonlinear Integration
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hu, Jianming & Luo, Qingxi & Tang, Jingwei & Heng, Jiani & Deng, Yuwen, 2022. "Conformalized temporal convolutional quantile regression networks for wind power interval forecasting," Energy, Elsevier, vol. 248(C).
- Yang, Kun & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Forecasting interval carbon price through a multi-scale interval-valued decomposition ensemble approach," Energy Economics, Elsevier, vol. 139(C).
- Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
- Liang, Yi & Niu, Dongxiao & Hong, Wei-Chiang, 2019. "Short term load forecasting based on feature extraction and improved general regression neural network model," Energy, Elsevier, vol. 166(C), pages 653-663.
- Sun, Jingyun & Zhao, Panpan & Sun, Shaolong, 2022. "A new secondary decomposition-reconstruction-ensemble approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 77(C).
- Spandagos, Constantine & Tovar Reaños, Miguel & Lynch, Muireann Á, 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Papers WP762, Economic and Social Research Institute (ESRI).
- Spandagos, Constantine & Tovar Reaños, Miguel Angel & Lynch, Muireann Á., 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Energy Economics, Elsevier, vol. 128(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yasmeen, Rizwana & Shah, Wasi Ul Hassan, 2025. "Impact of business cycles on energy poverty: Exploring the significance with sustainable development goals in newly industrialized economies," Applied Energy, Elsevier, vol. 378(PA).
- Li, Jiajia & Yang, Shiyu & Li, Jun & Li, Houjian, 2024. "Targeting SDG7: Identifying heterogeneous energy dilemmas for socially disadvantaged groups in India using machine learning," Energy Economics, Elsevier, vol. 138(C).
- Jing Cheng & Xiaobin Yu, 2024. "Spatial and temporal differences and convergence analysis of multidimensional relative poverty in ethnic areas," PLOS ONE, Public Library of Science, vol. 19(4), pages 1-20, April.
- Cheng, Shulei & Wang, Kexin & Chen, Yongtao & Meng, Fanxin, 2025. "Temporal-spatial decomposition and multi-scenario prediction analysis of energy poverty in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 219(C).
- Budría, Santiago & Bravo Chew, Leslie, 2025. "Enduring Inequalities: Analyzing Energy Poverty Inertia Across K-Means Clusters," IZA Discussion Papers 17809, Institute of Labor Economics (IZA).
- Xie, Li & Kong, Chun, 2024. "A fair grid connection cost-sharing model for electricity based on the random forest machine learning method," Utilities Policy, Elsevier, vol. 90(C).
- Karmaker, Shamal Chandra & Rjbongshi, Ajoy & Pal, Bikash & Sen, Kanchan Kumar & Chapman, Andrew J., 2025. "Machine learning-based prediction of energy poverty in Bangladesh: Unveiling key socioeconomic drivers for targeted policy actions," Socio-Economic Planning Sciences, Elsevier, vol. 99(C).
- Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
- Zhang, Xiaojing & Khan, Khalid & Shao, Xuefeng & Oprean-Stan, Camelia & Zhang, Qian, 2024. "The rising role of artificial intelligence in renewable energy development in China," Energy Economics, Elsevier, vol. 132(C).
- Urszula Grzybowska & Agnieszka Wojewódzka-Wiewiórska & Gintarė Vaznonienė & Hanna Dudek, 2024. "Households Vulnerable to Energy Poverty in the Visegrad Group Countries: An Analysis of Socio-Economic Factors Using a Machine Learning Approach," Energies, MDPI, vol. 17(24), pages 1-23, December.
- Soto, Gonzalo H & Martinez-Cobas, Xavier, 2024. "Green energy policies and energy poverty in Europe: Assessing low carbon dependency and energy productivity," Energy Economics, Elsevier, vol. 136(C).
- Lin Zheng & Eoghan McKenna, 2025. "Machine Learning with Administrative Data for Energy Poverty Identification in the UK," Energies, MDPI, vol. 18(12), pages 1-26, June.
- Takako Mochida & Andrew Chapman & Benjamin Craig McLellan, 2025. "Exploring Energy Poverty: Toward a Comprehensive Predictive Framework," Energies, MDPI, vol. 18(10), pages 1-23, May.
- Xu, Kunliang & Niu, Hongli, 2022. "Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Song, Malin & Pan, Heting & Shen, Zhiyang & Tamayo-Verleene, Kristine, 2024.
"Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value,"
Energy Economics, Elsevier, vol. 131(C).
- Malin Song & Heting Pan & Zhiyang Shen & Kristine Tamayo-Verleene, 2024. "Assessing the influence of artificial intelligence on the energy efficiency for sustainable ecological products value," Post-Print hal-04552684, HAL.
- Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
- Leilei Jiang & Pan Hu & Ke Dong & Lu Wang, 2024. "A Multi-Objective Method Based on Tag Eigenvalues Is Used to Predict the Supply Chain for Online Retailers," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global Scientific Publishing, vol. 17(1), pages 1-15, January.
- Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
- Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
- Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1624-:d:1656441. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.