IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1551-d1651872.html
   My bibliography  Save this article

Hybrid LSTM–Transformer Architecture with Multi-Scale Feature Fusion for High-Accuracy Gold Futures Price Forecasting

Author

Listed:
  • Yali Zhao

    (School of Economics and Management, North China University of Technology, Beijing 100114, China
    These authors contributed equally to this work.)

  • Yingying Guo

    (School of Economics and Management, North China University of Technology, Beijing 100114, China
    These authors contributed equally to this work.)

  • Xuecheng Wang

    (School of Economics and Management, North China University of Technology, Beijing 100114, China)

Abstract

Amidst global economic fluctuations and escalating geopolitical risks, gold futures, as a pivotal safe-haven asset, demonstrate price dynamics that directly impact investor decision-making and risk mitigation effectiveness. Traditional forecasting models face significant limitations in capturing long-term trends, addressing abrupt volatility, and mitigating multi-source noise within complex market environments characterized by nonlinear interactions and extreme events. Current research predominantly focuses on single-model approaches (e.g., ARIMA or standalone neural networks), inadequately addressing the synergistic effects of multimodal market signals (e.g., cross-market index linkages, exchange rate fluctuations, and policy shifts) and lacking the systematic validation of model robustness under extreme events. Furthermore, feature selection often relies on empirical assumptions, failing to uncover non-explicit correlations between market factors and gold futures prices. A review of the global literature reveals three critical gaps: (1) the insufficient integration of temporal dependency and global attention mechanisms, leading to imbalanced predictions of long-term trends and short-term volatility; (2) the neglect of dynamic coupling effects among cross-market risk factors, such as energy ETF-metal market spillovers; and (3) the absence of hybrid architectures tailored for high-frequency noise environments, limiting predictive utility for decision support. This study proposes a three-stage LSTM–Transformer–XGBoost fusion framework. Firstly, XGBoost-based feature importance ranking identifies six key drivers from thirty-six candidate indicators: the NASDAQ Index, S&P 500 closing price, silver futures, USD/CNY exchange rate, China’s 1-year Treasury yield, and Guotai Zhongzheng Coal ETF. Second, a dual-channel deep learning architecture integrates LSTM for long-term temporal memory and Transformer with multi-head self-attention to decode implicit relationships in unstructured signals (e.g., market sentiment and climate policies). Third, rolling-window forecasting is conducted using daily gold futures prices from the Shanghai Futures Exchange (2015–2025). Key innovations include the following: (1) a bidirectional LSTM–Transformer interaction architecture employing cross-attention mechanisms to dynamically couple global market context with local temporal features, surpassing traditional linear combinations; (2) a Dynamic Hierarchical Partition Framework (DHPF) that stratifies data into four dimensions (price trends, volatility, external correlations, and event shocks) to address multi-driver complexity; (3) a dual-loop adaptive mechanism enabling endogenous parameter updates and exogenous environmental perception to minimize prediction error volatility. This research proposes innovative cross-modal fusion frameworks for gold futures forecasting, providing financial institutions with robust quantitative tools to enhance asset allocation optimization and strengthen risk hedging strategies. It also provides an interpretable hybrid framework for derivative pricing intelligence. Future applications could leverage high-frequency data sharing and cross-market risk contagion models to enhance China’s influence in global gold pricing governance.

Suggested Citation

  • Yali Zhao & Yingying Guo & Xuecheng Wang, 2025. "Hybrid LSTM–Transformer Architecture with Multi-Scale Feature Fusion for High-Accuracy Gold Futures Price Forecasting," Mathematics, MDPI, vol. 13(10), pages 1-27, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1551-:d:1651872
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1551/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1551/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1551-:d:1651872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.