IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2024i1p71-d1555286.html
   My bibliography  Save this article

Price Prediction for Fresh Agricultural Products Based on a Boosting Ensemble Algorithm

Author

Listed:
  • Nana Zhang

    (College of Economics & Management, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Qi An

    (School of Engineering, The Open University of China, Beijing 100039, China)

  • Shuai Zhang

    (College of Business Administration, Capital University of Economics and Business, Beijing 100070, China)

  • Huanhuan Ma

    (College of Economics and Management, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China)

Abstract

The time series of agricultural prices exhibit brevity and considerable volatility. Considering that traditional time series models and machine learning models are facing challenges in making predictions with high accuracy and robustness, this paper proposes a Light gradient boosting machine model based on the boosting ensemble learning algorithm to predict prices for three representative types of fresh agricultural products (bananas, beef, crucian carp). The prediction performance of the Light gradient boosting machine model is evaluated by comparing it against multiple benchmark models (ARIMA, decision tree, random forest, support vector machine, XGBoost, and artificial neural network) in terms of accuracy, generalizability, and robustness on different datasets and under different time windows. Among these models, the Light gradient boosting machine model is shown to have the highest prediction accuracy and the most stable performance across three different datasets under both long-term and short-term time windows. As the time window length increases, the Light gradient boosting machine model becomes more advantageous for effectively reducing error fluctuation, demonstrating better robustness. Consequently, the model proposed in this paper holds significant potential for forecasting fresh agricultural product prices, thereby facilitating the advancement of precision and sustainable farming practices.

Suggested Citation

  • Nana Zhang & Qi An & Shuai Zhang & Huanhuan Ma, 2024. "Price Prediction for Fresh Agricultural Products Based on a Boosting Ensemble Algorithm," Mathematics, MDPI, vol. 13(1), pages 1-17, December.
  • Handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:71-:d:1555286
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/1/71/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/1/71/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Jian & Yan, Xin & Tian, Ye, 2020. "Unsupervised quadratic surface support vector machine with application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 280(3), pages 1008-1017.
    2. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maggioni, Francesca & Spinelli, Andrea, 2025. "A novel robust optimization model for nonlinear Support Vector Machine," European Journal of Operational Research, Elsevier, vol. 322(1), pages 237-253.
    2. Fethi, Meryem Duygun & Pasiouras, Fotios, 2010. "Assessing bank efficiency and performance with operational research and artificial intelligence techniques: A survey," European Journal of Operational Research, Elsevier, vol. 204(2), pages 189-198, July.
    3. Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
    4. Yanqin Bai & Xin Yan, 2016. "Conic Relaxations for Semi-supervised Support Vector Machines," Journal of Optimization Theory and Applications, Springer, vol. 169(1), pages 299-313, April.
    5. Hong-Yu Lin & Kuentai Chen, 2015. "The Trend of Average Unit Price in Taipei City," Research in World Economy, Research in World Economy, Sciedu Press, vol. 6(1), pages 133-142, March.
    6. Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
    7. Marius Lux & Wolfgang Karl Härdle & Stefan Lessmann, 2020. "Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid," Computational Statistics, Springer, vol. 35(3), pages 947-981, September.
    8. Gao, Zheming & Fang, Shu-Cherng & Luo, Jian & Medhin, Negash, 2021. "A kernel-free double well potential support vector machine with applications," European Journal of Operational Research, Elsevier, vol. 290(1), pages 248-262.
    9. Georgi Nalbantov & Philip Hans Franses & Patrick Groenen & Jan Bioch, 2010. "Estimating the Market Share Attraction Model using Support Vector Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 688-716.
    10. Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
    11. Hyejung Chung & Kyung-shik Shin, 2018. "Genetic Algorithm-Optimized Long Short-Term Memory Network for Stock Market Prediction," Sustainability, MDPI, vol. 10(10), pages 1-18, October.
    12. Ślepaczuk Robert & Zenkova Maryna, 2018. "Robustness of Support Vector Machines in Algorithmic Trading on Cryptocurrency Market," Central European Economic Journal, Sciendo, vol. 5(52), pages 186-205, January.
    13. Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
    14. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    15. Juan Laborda & Seyong Ryoo, 2021. "Feature Selection in a Credit Scoring Model," Mathematics, MDPI, vol. 9(7), pages 1-22, March.
    16. Shi, Yong & Qu, Yi & Chen, Zhensong & Mi, Yunlong & Wang, Yunong, 2024. "Improved credit risk prediction based on an integrated graph representation learning approach with graph transformation," European Journal of Operational Research, Elsevier, vol. 315(2), pages 786-801.
    17. Phichhang Ou & Hengshan Wang, 2009. "Prediction of Stock Market Index Movement by Ten Data Mining Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 3(12), pages 1-28, December.
    18. Ranjit Kumar Paul & Md Yeasin & C. Tamilselvi & A. K. Paul & Purushottam Sharma & Pratap S. Birthal, 2025. "Can Deep Learning Models Enhance the Accuracy of Agricultural Price Forecasting? Insights From India," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 32(1), March.
    19. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    20. Rubio, Ginés & Pomares, Héctor & Rojas, Ignacio & Herrera, Luis Javier, 2011. "A heuristic method for parameter selection in LS-SVM: Application to time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 725-739, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2024:i:1:p:71-:d:1555286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.