IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i5p1068-d1075171.html
   My bibliography  Save this article

Energy Consumption Forecasts by Gradient Boosting Regression Trees

Author

Listed:
  • Luca Di Persio

    (Department of Computer Science, University of Verona, 37134 Verona, Italy)

  • Nicola Fraccarolo

    (Department of Mathematics, University of Trento, 38123 Trento, Italy)

Abstract

Recent years have seen an increasing interest in developing robust, accurate and possibly fast forecasting methods for both energy production and consumption. Traditional approaches based on linear architectures are not able to fully model the relationships between variables, particularly when dealing with many features. We propose a Gradient-Boosting–Machine-based framework to forecast the demand of mixed customers of an energy dispatching company, aggregated according to their location within the seven Italian electricity market zones. The main challenge is to provide precise one-day-ahead predictions, despite the most recent data being two months old. This requires exogenous regressors, e.g., as historical features of part of the customers and air temperature, to be incorporated in the scheme and tailored to the specific case. Numerical simulations are conducted, resulting in a MAPE of 5–15% according to the market zone. The Gradient Boosting performs significantly better when compared to classical statistical models for time series, such as ARMA, unable to capture holidays.

Suggested Citation

  • Luca Di Persio & Nicola Fraccarolo, 2023. "Energy Consumption Forecasts by Gradient Boosting Regression Trees," Mathematics, MDPI, vol. 11(5), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1068-:d:1075171
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/5/1068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/5/1068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(8), pages 1352-1362, August.
    2. Lakshmana Ayaru & Petros-Pavlos Ypsilantis & Abigail Nanapragasam & Ryan Chang-Ho Choi & Anish Thillanathan & Lee Min-Ho & Giovanni Montana, 2015. "Prediction of Outcome in Acute Lower Gastrointestinal Bleeding Using Gradient Boosting," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-14, July.
    3. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    4. Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
    5. Lu, Hongfang & Cheng, Feifei & Ma, Xin & Hu, Gang, 2020. "Short-term prediction of building energy consumption employing an improved extreme gradient boosting model: A case study of an intake tower," Energy, Elsevier, vol. 203(C).
    6. Chris Tofallis, 2015. "A better measure of relative prediction accuracy for model selection and model estimation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(3), pages 524-524, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meshari D. Alanazi & Ahmad Saeed & Muhammad Islam & Shabana Habib & Hammad I. Sherazi & Sheroz Khan & Mohammad Munawar Shees, 2023. "Enhancing Short-Term Electrical Load Forecasting for Sustainable Energy Management in Low-Carbon Buildings," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    2. Enes Gul & Efthymia Staiou & Mir Jafar Sadegh Safari & Babak Vaheddoost, 2023. "Enhancing Meteorological Drought Modeling Accuracy Using Hybrid Boost Regression Models: A Case Study from the Aegean Region, Türkiye," Sustainability, MDPI, vol. 15(15), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    2. Guo, Wei & Liu, Qingfu & Luo, Zhidan & Tse, Yiuman, 2022. "Forecasts for international financial series with VMD algorithms," Journal of Asian Economics, Elsevier, vol. 80(C).
    3. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    4. Colin Singleton & Peter Grindrod, 2021. "Forecasting for Battery Storage: Choosing the Error Metric," Energies, MDPI, vol. 14(19), pages 1-11, October.
    5. Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    6. Daekook Kang, 2021. "Box-office forecasting in Korea using search trend data: a modified generalized Bass diffusion model," Electronic Commerce Research, Springer, vol. 21(1), pages 41-72, March.
    7. Larissa Koupriouchina & Jean-Pierre van der Rest & Zvi Schwartz, 2023. "Judgmental Adjustments of Algorithmic Hotel Occupancy Forecasts: Does User Override Frequency Impact Accuracy at Different Time Horizons?," Tourism Economics, , vol. 29(8), pages 2143-2164, December.
    8. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    9. Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
    10. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    11. Kayode Ayankoya & Andre P. Calitz & Jean H. Greyling, 2016. "Real-Time Grain Commodities Price Predictions in South Africa: A Big Data and Neural Networks Approach," Agrekon, Taylor & Francis Journals, vol. 55(4), pages 483-508, October.
    12. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    13. Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
    14. Marijana Zekić-Sušac & Marinela Knežević & Rudolf Scitovski, 2021. "Modeling the cost of energy in public sector buildings by linear regression and deep learning," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 307-322, March.
    15. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    16. Man Sing Wong & Tingneng Wang & Hung Chak Ho & Coco Y. T. Kwok & Keru Lu & Sawaid Abbas, 2018. "Towards a Smart City: Development and Application of an Improved Integrated Environmental Monitoring System," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
    17. Zekić-Sušac Marijana & Scitovski Rudolf & Has Adela, 2018. "Cluster analysis and artificial neural networks in predicting energy efficiency of public buildings as a cost-saving approach," Croatian Review of Economic, Business and Social Statistics, Sciendo, vol. 4(2), pages 57-66, November.
    18. Paolo Berta & Paolo Paruolo & Stefano Verzillo & Pietro Giorgio Lovaglio, 2020. "A bivariate prediction approach for adapting the health care system response to the spread of COVID-19," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-14, October.
    19. Shivaram Subramanian & Pavithra Harsha, 2021. "Demand Modeling in the Presence of Unobserved Lost Sales," Management Science, INFORMS, vol. 67(6), pages 3803-3833, June.
    20. Agnese Maria Di Brisco & Enea Giuseppe Bongiorno & Aldo Goia & Sonia Migliorati, 2023. "Bayesian flexible beta regression model with functional covariate," Computational Statistics, Springer, vol. 38(2), pages 623-645, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:5:p:1068-:d:1075171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.