IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p901-d1064234.html
   My bibliography  Save this article

Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain

Author

Listed:
  • Kangye Tan

    (School of Business, Macau University of Science and Technology, Macao 999078, China)

  • Yihui Tian

    (Faculty of Business, City University of Macau, Macao 999078, China)

  • Fang Xu

    (School of National Safety and Emergency Management, Beijing Normal University at Zhuhai, Zhuhai 519087, China)

  • Chunsheng Li

    (School of Business, Macau University of Science and Technology, Macao 999078, China)

Abstract

In the context of carbon neutralization, the electric vehicle and energy storage market is growing rapidly. As a result, battery recycling is an important work with the consideration of the advent of battery retirement and resource constraints, environmental factors, resource regional constraints, and price factors. Based on the theoretical research of intelligent algorithm and mathematical models, an integer programming model of urban power battery reverse supply chain scheduling was established with the goal of the highest customer satisfaction and the least total cost of logistics and distribution, to study the influence of the resources and operation status of a built city recycling center and dismantling center on the power battery reverse supply chain. The model includes vehicle load, customer demand point satisfaction range, and service capacity constraints. This study collected regional image data, conducted image analysis, and further designed an improved Non-dominated Sorting Genetic Algorithm-II (NSGA-II) optimization algorithm suitable to solve the global optimization problem by introducing the improvement strategy of convergence rate, particle search, and the traditional elite individual retention. The results verified the practicability of the model, the global optimization ability of the algorithm to solve the problem, and the operation speed through comparing the results obtained from the basic algorithm. A reasonable comprehensive solution for the location and path optimization of the urban recycling center was also obtained. Multi-objective optimization was carried out in vehicle scheduling, facility construction, and customer satisfaction construction. The basic algorithm and integrated optimization software were compared. We found that the model and the scheme provided by the algorithm can significantly reduce the operation cost of the enterprise. This research provided new insights for enterprises to effectively utilize resources and optimize the reverse supply chain scheduling of an urban power battery.

Suggested Citation

  • Kangye Tan & Yihui Tian & Fang Xu & Chunsheng Li, 2023. "Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain," Mathematics, MDPI, vol. 11(4), pages 1-26, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:901-:d:1064234
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shen, Huayu & Hou, Fei, 2021. "Trade policy uncertainty and corporate innovation evidence from Chinese listed firms in new energy vehicle industry," Energy Economics, Elsevier, vol. 97(C).
    2. Xianhua Wu & Yaru Cao & Yang Xiao & Ji Guo, 2020. "Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics," Annals of Operations Research, Springer, vol. 290(1), pages 865-896, July.
    3. Ao Lv & Baofeng Sun, 2022. "Multi-Objective Robust Optimization for the Sustainable Location-Inventory-Routing Problem of Auto Parts Supply Logistics," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    4. Hao Yu & Xu Sun & Wei Deng Solvang & Xu Zhao, 2020. "Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China)," IJERPH, MDPI, vol. 17(5), pages 1-25, March.
    5. Wang, Mengtong & Zhang, Canrong & Bell, Michael G.H. & Miao, Lixin, 2022. "A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1258-1276.
    6. Dong, Feng & Liu, Yajie, 2020. "Policy evolution and effect evaluation of new-energy vehicle industry in China," Resources Policy, Elsevier, vol. 67(C).
    7. Jiawei Shi & Yan Zhou, 2022. "Group Decision Making for Product Innovation Based on PZB Model in Fuzzy Environment: A Case from New-Energy Storage Innovation Design," Mathematics, MDPI, vol. 10(19), pages 1-26, October.
    8. Faugère, Louis & Klibi, Walid & White, Chelsea & Montreuil, Benoit, 2022. "Dynamic pooled capacity deployment for urban parcel logistics," European Journal of Operational Research, Elsevier, vol. 303(2), pages 650-667.
    9. Maaike Hoogeboom & Wout Dullaert & David Lai & Daniele Vigo, 2020. "Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 54(2), pages 400-416, March.
    10. Carrasco Heine, Oscar F. & Demleitner, Antonia & Matuschke, Jannik, 2023. "Bifactor approximation for location routing with vehicle and facility capacities," European Journal of Operational Research, Elsevier, vol. 304(2), pages 429-442.
    11. Qifa Xu & Liukai Wang & Cuixia Jiang & Fu Jia & Lujie Chen, 2022. "Tail dependence network of new energy vehicle industry in mainland China," Annals of Operations Research, Springer, vol. 315(1), pages 565-590, August.
    12. Vincent F. Yu & Grace Aloina & Hadi Susanto & Mohammad Khoirul Effendi & Shih-Wei Lin, 2022. "Regional Location Routing Problem for Waste Collection Using Hybrid Genetic Algorithm-Simulated Annealing," Mathematics, MDPI, vol. 10(12), pages 1-23, June.
    13. Schultz, Michael & Soolaki, Majid & Salari, Mostafa & Bakhshian, Elnaz, 2023. "A combined optimization–simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities," Journal of Air Transport Management, Elsevier, vol. 106(C).
    14. Yusuf Yilmaz & Can B. Kalayci, 2022. "Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery," Mathematics, MDPI, vol. 10(17), pages 1-22, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Jianghong & Guo, Ping & Xu, Guangyi & Xu, Gangyan & Ning, Yu, 2024. "An integrated decision framework for resilient sustainable waste electric vehicle battery recycling transfer station site selection," Applied Energy, Elsevier, vol. 373(C).
    2. Nebojša Brkljač & Milan Delić & Marko Orošnjak & Nenad Medić & Slavko Rakić & Ljiljana Popović, 2024. "Interdependent Influences of Reverse Logistics Implementation Barriers in the Conditions of an Emerging Economy," Mathematics, MDPI, vol. 12(16), pages 1-19, August.
    3. Yi Liu & Weihua Liu & Chunsheng Li, 2024. "Recycling Models of Waste Electrical and Electronic Equipment under Market-Driven Deposit-Refund System: A Stackelberg Game Analysis," Mathematics, MDPI, vol. 12(14), pages 1-19, July.
    4. Kangye Tan & Weihua Liu & Fang Xu & Chunsheng Li, 2023. "Optimization Model and Algorithm of Logistics Vehicle Routing Problem under Major Emergency," Mathematics, MDPI, vol. 11(5), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Shufeng & Xiong, Yongqing, 2024. "Differences in the innovation effectiveness of China's new energy vehicle industry policies: A comparison of subsidized and non-subsidized policies," Energy, Elsevier, vol. 304(C).
    2. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    3. Lei Ding & Xuejuan Fang, 2022. "Spatial–temporal distribution of air-pollution-intensive industries and its social-economic driving mechanism in Zhejiang Province, China: a framework of spatial econometric analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1681-1712, February.
    4. Shen, Yiran & Liu, Chang & Sun, Xiaolei & Guo, Kun, 2023. "Investor sentiment and the Chinese new energy stock market: A risk–return perspective," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 395-408.
    5. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    6. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    7. Gabriele Cervino & Luca Fiorillo & Giovanni Surace & Valeria Paduano & Maria Teresa Fiorillo & Rosa De Stefano & Riccardo Laudicella & Sergio Baldari & Michele Gaeta & Marco Cicciù, 2020. "SARS-CoV-2 Persistence: Data Summary up to Q2 2020," Data, MDPI, vol. 5(3), pages 1-16, September.
    8. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    9. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    10. Luka Matijević & Marko Đurasević & Domagoj Jakobović, 2023. "A Variable Neighborhood Search Method with a Tabu List and Local Search for Optimizing Routing in Trucks in Maritime Ports," Mathematics, MDPI, vol. 11(17), pages 1-22, August.
    11. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    12. Ao Lv & Baofeng Sun, 2022. "Multi-Objective Robust Optimization for the Sustainable Location-Inventory-Routing Problem of Auto Parts Supply Logistics," Mathematics, MDPI, vol. 10(16), pages 1-22, August.
    13. Dongming Wu & Liukai Yu & Qianqian Zhang & Yangyang Jiao & Yuhe Wu, 2021. "Materialism, Ecological Consciousness and Purchasing Intention of Electric Vehicles: An Empirical Analysis among Chinese Consumers," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    14. Sheng, Jichuan & Qiu, Wenge & Han, Xiao, 2020. "China’s PES-like horizontal eco-compensation program: Combining market-oriented mechanisms and government interventions," Ecosystem Services, Elsevier, vol. 45(C).
    15. Zhang, Hongyan & Zhang, Lin, 2023. "Public support and energy innovation: Why do firms react differently?," Energy Economics, Elsevier, vol. 119(C).
    16. Zhitao Xu & Adel Elomri & Roberto Baldacci & Laoucine Kerbache & Zhenyong Wu, 2024. "Frontiers and trends of supply chain optimization in the age of industry 4.0: an operations research perspective," Annals of Operations Research, Springer, vol. 338(2), pages 1359-1401, July.
    17. Anna Sciomachen & Maria Truvolo, 2023. "An Exact Approach for Selecting Pickup-Delivery Stations in Urban Areas to Reduce Distribution Emission Costs," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    18. Lingshan Chen & Yunong Li & Qian Xie & Mao Zhou, 2024. "Import Policy Uncertainty and Innovation," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 32(1), pages 197-230, January.
    19. Yin, Doudou & Si, Deng-Kui & Wang, Yun, 2024. "How does corporate investment respond to trade policy uncertainty in China? The role of political connections," Economic Analysis and Policy, Elsevier, vol. 82(C), pages 1429-1445.
    20. Zhang, Chonghui & Li, Xiangwen & Sun, Yunfei & Chen, Ji & Streimikiene, Dalia, 2023. "Policy modeling consistency analysis during energy crises: Evidence from China's coal power policy," Technological Forecasting and Social Change, Elsevier, vol. 197(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:901-:d:1064234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.