IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i4p1032-d1072611.html
   My bibliography  Save this article

Improved Feature Selection Based on Chaos Game Optimization for Social Internet of Things with a Novel Deep Learning Model

Author

Listed:
  • Abdelghani Dahou

    (Faculty of Computer Sciences and Mathematics, Ahmed Draia University, Adrar 01000, Algeria)

  • Samia Allaoua Chelloug

    (Information Technology Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Mai Alduailij

    (Department of Computer Science, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia)

  • Mohamed Abd Elaziz

    (Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
    Department of Artificial Intelligence Science and Engineering, Galala University, Suze 435611, Egypt
    Artificial Intelligence Research Center (AIRC), Ajman University, Ajman 346, United Arab Emirates
    Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon)

Abstract

The Social Internet of Things (SIoT) ecosystem tends to process and analyze extensive data generated by users from both social networks and Internet of Things (IoT) systems and derives knowledge and diagnoses from all connected objects. To overcome many challenges in the SIoT system, such as big data management, analysis, and reporting, robust algorithms should be proposed and validated. Thus, in this work, we propose a framework to tackle the high dimensionality of transferred data over the SIoT system and improve the performance of several applications with different data types. The proposed framework comprises two parts: Transformer CNN (TransCNN), a deep learning model for feature extraction, and the Chaos Game Optimization (CGO) algorithm for feature selection. To validate the framework’s effectiveness, several datasets with different data types were selected, and various experiments were conducted compared to other methods. The results showed that the efficiency of the developed method is better than other models according to the performance metrics in the SIoT environment. In addition, the average of the developed method based on the accuracy, sensitivity, specificity, number of selected features, and fitness value is 88.30%, 87.20%, 92.94%, 44.375, and 0.1082, respectively. The mean rank obtained using the Friedman test is the best value overall for the competitive algorithms.

Suggested Citation

  • Abdelghani Dahou & Samia Allaoua Chelloug & Mai Alduailij & Mohamed Abd Elaziz, 2023. "Improved Feature Selection Based on Chaos Game Optimization for Social Internet of Things with a Novel Deep Learning Model," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:1032-:d:1072611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/4/1032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/4/1032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xuechen Li & Xinfang Ma & Fengchao Xiao & Fei Wang & Shicheng Zhang, 2020. "Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction," Energies, MDPI, vol. 13(22), pages 1-22, November.
    2. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    3. Hadeer Adel & Abdelghani Dahou & Alhassan Mabrouk & Mohamed Abd Elaziz & Mohammed Kayed & Ibrahim Mahmoud El-Henawy & Samah Alshathri & Abdelmgeid Amin Ali, 2022. "Improving Crisis Events Detection Using DistilBERT with Hunger Games Search Algorithm," Mathematics, MDPI, vol. 10(3), pages 1-22, January.
    4. Ibrahim Alsaidan & Mohamed A. M. Shaheen & Hany M. Hasanien & Muhannad Alaraj & Abrar S. Alnafisah, 2021. "Proton Exchange Membrane Fuel Cells Modeling Using Chaos Game Optimization Technique," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    5. Abderrahim Zannou & Abdelhak Boulaalam & El Habib Nfaoui, 2020. "SIoT: A New Strategy to Improve the Network Lifetime with an Efficient Search Process," Future Internet, MDPI, vol. 13(1), pages 1-23, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nour Elhouda Chalabi & Abdelouahab Attia & Abderraouf Bouziane & Mahmoud Hassaballah & Abed Alanazi & Adel Binbusayyis, 2023. "An Archive-Guided Equilibrium Optimizer Based on Epsilon Dominance for Multi-Objective Optimization Problems," Mathematics, MDPI, vol. 11(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
    2. Mohamed Abdel-Basset & Reda Mohamed & Victor Chang, 2021. "An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-23, November.
    3. Zhang, Lifang & Wang, Jianzhou & Niu, Xinsong & Liu, Zhenkun, 2021. "Ensemble wind speed forecasting with multi-objective Archimedes optimization algorithm and sub-model selection," Applied Energy, Elsevier, vol. 301(C).
    4. Wang, Jianzhou & Wang, Shuai & Zeng, Bo & Lu, Haiyan, 2022. "A novel ensemble probabilistic forecasting system for uncertainty in wind speed," Applied Energy, Elsevier, vol. 313(C).
    5. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    6. Wang, Jianzhou & An, Yining & Li, Zhiwu & Lu, Haiyan, 2022. "A novel combined forecasting model based on neural networks, deep learning approaches, and multi-objective optimization for short-term wind speed forecasting," Energy, Elsevier, vol. 251(C).
    7. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    8. Wang, Jianzhou & Wang, Shuai & Li, Zhiwu, 2021. "Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression," Renewable Energy, Elsevier, vol. 179(C), pages 1246-1261.
    9. Antonios Pliatsios & Dimitrios Lymperis & Christos Goumopoulos, 2023. "S2NetM: A Semantic Social Network of Things Middleware for Developing Smart and Collaborative IoT-Based Solutions," Future Internet, MDPI, vol. 15(6), pages 1-27, June.
    10. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    11. Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
    12. Mohamed Ahmed Ali & Mohey Eldin Mandour & Mohammed Elsayed Lotfy, 2023. "Adaptive Estimation of Quasi-Empirical Proton Exchange Membrane Fuel Cell Models Based on Coot Bird Optimizer and Data Accumulation," Sustainability, MDPI, vol. 15(11), pages 1-20, June.
    13. Andrew J. Riad & Hany M. Hasanien & Rania A. Turky & Ahmed H. Yakout, 2023. "Identifying the PEM Fuel Cell Parameters Using Artificial Rabbits Optimization Algorithm," Sustainability, MDPI, vol. 15(5), pages 1-17, March.
    14. Zhang, Dongxue & Wang, Shuai & Liang, Yuqiu & Du, Zhiyuan, 2023. "A novel combined model for probabilistic load forecasting based on deep learning and improved optimizer," Energy, Elsevier, vol. 264(C).
    15. Stefano Frizzo Stefenon & Laio Oriel Seman & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2023. "Aggregating Prophet and Seasonal Trend Decomposition for Time Series Forecasting of Italian Electricity Spot Prices," Energies, MDPI, vol. 16(3), pages 1-18, January.
    16. Du, Pei & Guo, Ju'e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2022. "A novel two-stage seasonal grey model for residential electricity consumption forecasting," Energy, Elsevier, vol. 258(C).
    17. Hu, Yahui & Guo, Yingshi & Fu, Rui, 2023. "A novel wind speed forecasting combined model using variational mode decomposition, sparse auto-encoder and optimized fuzzy cognitive mapping network," Energy, Elsevier, vol. 278(PA).
    18. Zhou, Yilin & Wang, Jianzhou & Lu, Haiyan & Zhao, Weigang, 2022. "Short-term wind power prediction optimized by multi-objective dragonfly algorithm based on variational mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    19. Nagwa F. Ibrahim & Sid Ahmed El Mehdi Ardjoun & Mohammed Alharbi & Abdulaziz Alkuhayli & Mohamed Abuagreb & Usama Khaled & Mohamed Metwally Mahmoud, 2023. "Multiport Converter Utility Interface with a High-Frequency Link for Interfacing Clean Energy Sources (PV\Wind\Fuel Cell) and Battery to the Power System: Application of the HHA Algorithm," Sustainability, MDPI, vol. 15(18), pages 1-25, September.
    20. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:4:p:1032-:d:1072611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.