IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6121-d449193.html
   My bibliography  Save this article

Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction

Author

Listed:
  • Xuechen Li

    (State Key Laboratory of Petroleum Resources and Prospecting & MOE Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Xinfang Ma

    (State Key Laboratory of Petroleum Resources and Prospecting & MOE Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Fengchao Xiao

    (State Key Laboratory of Petroleum Resources and Prospecting & MOE Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Fei Wang

    (State Key Laboratory of Petroleum Resources and Prospecting & MOE Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

  • Shicheng Zhang

    (State Key Laboratory of Petroleum Resources and Prospecting & MOE Key Laboratory of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China)

Abstract

Production prediction plays an important role in decision making, development planning, and economic evaluation during the exploration and development period. However, applying traditional methods for production forecasting of newly developed wells in the conglomerate reservoir is restricted by limited historical data, complex fracture propagation, and frequent operational changes. This study proposed a Gated Recurrent Unit (GRU) neural network-based model to achieve batch production forecasting in M conglomerate reservoir of China, which tackles the limitations of traditional decline curve analysis and conventional time-series prediction methods. The model is trained by four features of production rate, tubing pressure (TP), choke size (CS), and shut-in period (SI) from 70 multistage hydraulic fractured horizontal wells. Firstly, a comprehensive data preprocessing is implemented, including excluding unfit wells, data screening, feature selection, partitioning data set, z-score normalization, and format conversion. Then, the four-feature model is compared with the model considering production only, and it is found that with frequent oilfield operations changes, the four-feature model could accurately capture the complex variance pattern of production rate. Further, Random Forest (RF) is employed to optimize the prediction results of GRU. For a fair evaluation, the performance of the proposed model is compared with that of simple Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) neural network. The results show that the proposed approach outperforms the others in prediction accuracy and generalization ability. It is worth mentioning that under the guidance of continuous learning, the GRU model can be updated as soon as more wells become available.

Suggested Citation

  • Xuechen Li & Xinfang Ma & Fengchao Xiao & Fei Wang & Shicheng Zhang, 2020. "Application of Gated Recurrent Unit (GRU) Neural Network for Smart Batch Production Prediction," Energies, MDPI, vol. 13(22), pages 1-22, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6121-:d:449193
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lei Tan & Lihua Zuo & Binbin Wang, 2018. "Methods of Decline Curve Analysis for Shale Gas Reservoirs," Energies, MDPI, vol. 11(3), pages 1-18, March.
    2. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    3. Gérard Biau & Erwan Scornet, 2016. "Rejoinder on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 264-268, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).
    2. Abdelghani Dahou & Samia Allaoua Chelloug & Mai Alduailij & Mohamed Abd Elaziz, 2023. "Improved Feature Selection Based on Chaos Game Optimization for Social Internet of Things with a Novel Deep Learning Model," Mathematics, MDPI, vol. 11(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hou, Lei & Elsworth, Derek & Zhang, Fengshou & Wang, Zhiyuan & Zhang, Jianbo, 2023. "Evaluation of proppant injection based on a data-driven approach integrating numerical and ensemble learning models," Energy, Elsevier, vol. 264(C).
    2. Ma, Zhikai & Huo, Qian & Wang, Wei & Zhang, Tao, 2023. "Voltage-temperature aware thermal runaway alarming framework for electric vehicles via deep learning with attention mechanism in time-frequency domain," Energy, Elsevier, vol. 278(C).
    3. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    4. Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
    5. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    6. Escribano, Álvaro & Wang, Dandan, 2021. "Mixed random forest, cointegration, and forecasting gasoline prices," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1442-1462.
    7. Yigit Aydede & Jan Ditzen, 2022. "Identifying the regional drivers of influenza-like illness in Nova Scotia with dominance analysis," Papers 2212.06684, arXiv.org.
    8. Siyoon Kwon & Hyoseob Noh & Il Won Seo & Sung Hyun Jung & Donghae Baek, 2021. "Identification Framework of Contaminant Spill in Rivers Using Machine Learning with Breakthrough Curve Analysis," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    9. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    10. Yi Cao & Xue Li, 2022. "Multi-Model Attention Fusion Multilayer Perceptron Prediction Method for Subway OD Passenger Flow under COVID-19," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    11. Filmer,Deon P. & Nahata,Vatsal & Sabarwal,Shwetlena, 2021. "Preparation, Practice, and Beliefs : A Machine Learning Approach to Understanding Teacher Effectiveness," Policy Research Working Paper Series 9847, The World Bank.
    12. Daniel Boller & Michael Lechner & Gabriel Okasa, 2021. "The Effect of Sport in Online Dating: Evidence from Causal Machine Learning," Papers 2104.04601, arXiv.org.
    13. Jorge Antunes & Peter Wanke & Thiago Fonseca & Yong Tan, 2023. "Do ESG Risk Scores Influence Financial Distress? Evidence from a Dynamic NDEA Approach," Sustainability, MDPI, vol. 15(9), pages 1-32, May.
    14. Lyudmyla Kirichenko & Tamara Radivilova & Vitalii Bulakh, 2018. "Machine Learning in Classification Time Series with Fractal Properties," Data, MDPI, vol. 4(1), pages 1-13, December.
    15. Ivan Brandić & Lato Pezo & Nikola Bilandžija & Anamarija Peter & Jona Šurić & Neven Voća, 2023. "Comparison of Different Machine Learning Models for Modelling the Higher Heating Value of Biomass," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    16. José A. Ferreira, 2022. "Models under which random forests perform badly; consequences for applications," Computational Statistics, Springer, vol. 37(4), pages 1839-1854, September.
    17. Villacis, Alexis & Badruddoza, Syed & Mayorga, Joaquin & Mishra, Ashok K., 2022. "Using Machine Learning to Test the Consistency of Food Insecurity Measures," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322472, Agricultural and Applied Economics Association.
    18. Valeria D’Amato & Rita D’Ecclesia & Susanna Levantesi, 2022. "ESG score prediction through random forest algorithm," Computational Management Science, Springer, vol. 19(2), pages 347-373, June.
    19. Raman Pall & Yvan Gauthier & Sofia Auer & Walid Mowaswes, 2023. "Predicting drug shortages using pharmacy data and machine learning," Health Care Management Science, Springer, vol. 26(3), pages 395-411, September.
    20. Nametso Matomela & Tianxin Li & Peng Zhang & Harrison Odion Ikhumhen & Namir Domingos Raimundo Lopes, 2023. "Role of Landscape and Land-Use Transformation on Nonpoint Source Pollution and Runoff Distribution in the Dongsheng Basin, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6121-:d:449193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.