IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014563.html
   My bibliography  Save this article

A shale gas production prediction model based on masked convolutional neural network

Author

Listed:
  • Zhou, Wei
  • Li, Xiangchengzhen
  • Qi, ZhongLi
  • Zhao, HaiHang
  • Yi, Jun

Abstract

Shale gas production prediction is of great significance for shale gas exploration and development, as it can optimize exploration strategies and guide adjustments to production parameters for both new and existing wells. However, the dynamic production characteristics of shale gas wells under the influence of multiple factors such as reservoirs, engineering, and production, exhibit complex nonlinear and non-stationary features, leading to low accuracy in predicting shale gas production. To address this issue, a novel masked convolutional neural network (M-CNN) based on masked autoencoders (MAE) is proposed for shale gas production prediction. First, high-dimensional shale gas production data are transformed into images with unknown information using an encoding structure, thereby converting the regression task into images generation task. Then, convolutional neural network is used for image restoration prediction, and the corresponding numerical values at the image positions are extracted as shale gas production prediction results. Specifically, dilated convolution and multi-scale residual structure (MSRS) are developed to improve the feature representation capability of the network. Meanwhile, convolutional block attention module (CBAM) is adopted to enhance the feature extraction ability of the M-CNN. The performance of our method is validated experimentally on shale gas production data of Changning (CN) block in China. The average RMSE, MRE, and R2 on the test sets are 0.211 (104m3/d), 10.9%, and 0.906, respectively, which is much lower than the traditional time series models. Experimental results demonstrate the effectiveness and superiority of the proposed M-CNN method for shale gas production prediction.

Suggested Citation

  • Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014563
    DOI: 10.1016/j.apenergy.2023.122092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.