IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v41y2025i2p821-843.html
   My bibliography  Save this article

A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching

Author

Listed:
  • Dong, Yilun
  • Hao, Youzhi
  • Lu, Detang

Abstract

Shale gas production forecasting is an important research topic in the gas industry. A common shale gas block includes dozens or even thousands of wells and therefore has a great number of historical production series. However, most existing methods apply single-well modelling. This cannot exploit data from other wells and requires a long production history from the target well, so the forecasting timeliness is compromised. Moreover, the parameters required by many of the existing methods are difficult to collect in practice, so the forecasting accessibility is compromised. Therefore, this study presents a shale gas production forecasting framework with improved timeliness and accessibility. To ensure timeliness, the proposed approach utilises historical data from existing wells and only requires a short production history from the target well. To ensure accessibility, the proposed approach only requires past daily production time and gas yield. The performance of the proposed method is demonstrated through a comparison with baseline methods. The results regarding cumulative gas production forecasting indicate that the proposed method has an average overall mean absolute percentage error (OMAPE) of 0.210, outperforming an artificial neural network with an average OMAPE of 0.241 and ARIMA with an average OMAPE of more than 2.

Suggested Citation

  • Dong, Yilun & Hao, Youzhi & Lu, Detang, 2025. "A framework for timely and accessible long-term forecasting of shale gas production based on time series pattern matching," International Journal of Forecasting, Elsevier, vol. 41(2), pages 821-843.
  • Handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:821-843
    DOI: 10.1016/j.ijforecast.2024.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207024000761
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2024.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    2. Solarin, Sakiru Adebola & Bello, Mufutau Opeyemi, 2020. "The impact of shale gas development on the U.S economy: Evidence from a quantile autoregressive distributed lag model," Energy, Elsevier, vol. 205(C).
    3. Li, Daolun & Zhou, Xia & Xu, Yanmei & Wan, Yujin & Zha, Wenshu, 2023. "Deep learning-based analysis of the main controlling factors of different gas-fields recovery rate," Energy, Elsevier, vol. 285(C).
    4. Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
    5. Feng, Gen-Fu & Wang, Quan-Jing & Chu, Yin & Wen, Jun & Chang, Chun-Ping, 2021. "Does the shale gas boom change the natural gas price-production relationship? Evidence from the U.S. market," Energy Economics, Elsevier, vol. 93(C).
    6. Zha, Wenshu & Liu, Yuping & Wan, Yujin & Luo, Ruilan & Li, Daolun & Yang, Shan & Xu, Yanmei, 2022. "Forecasting monthly gas field production based on the CNN-LSTM model," Energy, Elsevier, vol. 260(C).
    7. Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
    8. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    9. Liu, Haomin & Zhang, Zaixu & Zhang, Tao, 2022. "Shale gas investment decision-making: Green and efficient development under market, technology and environment uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    10. Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
    11. Nguyen-Le, Viet & Shin, Hyundon, 2022. "Artificial neural network prediction models for Montney shale gas production profile based on reservoir and fracture network parameters," Energy, Elsevier, vol. 244(PB).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gou, Liangjie & Yang, Zhaozhong & Min, Chao & Yi, Duo & Li, Xiaogang & Kong, Bing, 2024. "A novel domain adaptation method with physical constraints for shale gas production forecasting," Applied Energy, Elsevier, vol. 371(C).
    2. Daihong Gu & Rongchen Zheng & Peng Cheng & Shuaiqi Zhou & Gongjie Yan & Haitao Liu & Kexin Yang & Jianguo Wang & Yuan Zhu & Mingwei Liao, 2024. "Single Well Production Prediction Model of Gas Reservoir Based on CNN-BILSTM-AM," Energies, MDPI, vol. 17(22), pages 1-18, November.
    3. Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
    4. Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
    5. Xiangming Kong & Yuetian Liu & Liang Xue & Guanlin Li & Dongdong Zhu, 2023. "A Hybrid Oil Production Prediction Model Based on Artificial Intelligence Technology," Energies, MDPI, vol. 16(3), pages 1-16, January.
    6. Shi, Changfeng & Zhi, Jiaqi & Yao, Xiao & Zhang, Hong & Yu, Yue & Zeng, Qingshun & Li, Luji & Zhang, Yuxi, 2023. "How can China achieve the 2030 carbon peak goal—a crossover analysis based on low-carbon economics and deep learning," Energy, Elsevier, vol. 269(C).
    7. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    8. Feiyu Chen & Linghui Sun & Boyu Jiang & Xu Huo & Xiuxiu Pan & Chun Feng & Zhirong Zhang, 2025. "A Review of AI Applications in Unconventional Oil and Gas Exploration and Development," Energies, MDPI, vol. 18(2), pages 1-30, January.
    9. Sun, Bo & Fan, Boyang & Zhang, Yifan & Xie, Jingdong, 2023. "Investment decisions and strategies of China's energy storage technology under policy uncertainty: A real options approach," Energy, Elsevier, vol. 278(PA).
    10. Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
    11. Wen, Jun & Zhang, Sen & Chang, Chun-Ping & Anugrah, Donni Fajar & Affandi, Yoga, 2023. "Does climate vulnerability promote green investment under energy supply restriction?," Energy Economics, Elsevier, vol. 124(C).
    12. Mihail Busu & Madalina Vanesa Vargas & Sorin Anagnoste, 2023. "Navigating the Intricate Relationship between Investments and Global Output: A Leontief Matrix Case Study of Romania," JRFM, MDPI, vol. 16(12), pages 1-21, December.
    13. Marco Zanotti, 2025. "Do global forecasting models require frequent retraining?," Working Papers 551, University of Milano-Bicocca, Department of Economics.
    14. Schmidt, Felix G. & Pibernik, Richard, 2025. "Data-driven inventory control for large product portfolios: A practical application of prescriptive analytics," European Journal of Operational Research, Elsevier, vol. 322(1), pages 254-269.
    15. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    16. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    17. Aniket Vatsa & Ananda Shankar Hati & Vadim Bolshev & Alexander Vinogradov & Vladimir Panchenko & Prasun Chakrabarti, 2023. "Deep Learning-Based Transformer Moisture Diagnostics Using Long Short-Term Memory Networks," Energies, MDPI, vol. 16(5), pages 1-14, March.
    18. Moreno, Sinvaldo Rodrigues & Seman, Laio Oriel & Stefenon, Stefano Frizzo & Coelho, Leandro dos Santos & Mariani, Viviana Cocco, 2024. "Enhancing wind speed forecasting through synergy of machine learning, singular spectral analysis, and variational mode decomposition," Energy, Elsevier, vol. 292(C).
    19. Karla Schröder & Gonzalo Farias & Sebastián Dormido-Canto & Ernesto Fabregas, 2024. "Comparative Analysis of Deep Learning Methods for Fault Avoidance and Predicting Demand in Electrical Distribution," Energies, MDPI, vol. 17(11), pages 1-13, June.
    20. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:41:y:2025:i:2:p:821-843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.