IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v345y2025i2d10.1007_s10479-021-04492-4.html
   My bibliography  Save this article

A residual driven ensemble machine learning approach for forecasting natural gas prices: analyses for pre-and during-COVID-19 phases

Author

Listed:
  • Rabin K. Jana

    (Indian Institute of Management Raipur)

  • Indranil Ghosh

    (Institute of Management Technology Hyderabad)

Abstract

The natural gas price is an essential financial variable that needs periodic modeling and predictive analysis for many practical implications. Macroeconomic euphoria and external uncertainty make its evolutionary patterns highly complex. We propose a two-stage granular framework to perform predictive analysis of the natural gas futures for the USA (NGF-USA) and the UK natural gas futures for the EU (NGF-UK) for pre-and during COVID-19 phases. The residuals of the previous stage are introduced as a new explanatory feature along with standard technical indicators to perform predictive tasks. The importance of the new feature is explained through the Boruta feature evaluation methodology. Maximal Overlap Discrete Wavelet Transformation (MODWT) is applied to decompose the original time-series observations of the natural gas prices to enable granular level forecasting. Random Forest is invoked on each component to fetch the respective predictions. The aggregated component-wise sums lead to final predictions. A rigorous performance assessment signifies the efficacy of the proposed framework. The results show the effectiveness of the residual as a feature in deriving accurate forecasts. The framework is highly efficient in analyzing patterns in the presence of a limited number of data points during the uncertain COVID-19 phase covering the first and second waves of the pandemic. Our findings reveal that the prediction accuracy is the best for the NGF-UK in the pre-COVID-19 period. Also, the prediction accuracy of the NGF-USA is better in the COVID-19 period than the pre-COVID-19 period.

Suggested Citation

  • Rabin K. Jana & Indranil Ghosh, 2025. "A residual driven ensemble machine learning approach for forecasting natural gas prices: analyses for pre-and during-COVID-19 phases," Annals of Operations Research, Springer, vol. 345(2), pages 757-778, February.
  • Handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04492-4
    DOI: 10.1007/s10479-021-04492-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04492-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04492-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Kuan-Ming & Etienne, Xiaoli, 2021. "Do natural hazards in the Gulf Coast still matter for state-level natural gas prices in the US? Evidence after the shale gas boom," Energy Economics, Elsevier, vol. 98(C).
    2. Mensi, Walid & Rehman, Mobeen Ur & Maitra, Debasish & Al-Yahyaee, Khamis Hamed & Vo, Xuan Vinh, 2021. "Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain," Resources Policy, Elsevier, vol. 72(C).
    3. Avraam, Charalampos & Bistline, John E.T. & Brown, Maxwell & Vaillancourt, Kathleen & Siddiqui, Sauleh, 2021. "North American natural gas market and infrastructure developments under different mechanisms of renewable policy coordination," Energy Policy, Elsevier, vol. 148(PB).
    4. Liao, Jianhui & Zhu, Xuehong & Chen, Jinyu, 2021. "Dynamic spillovers across oil, gold and stock markets in the presence of major public health emergencies," International Review of Financial Analysis, Elsevier, vol. 77(C).
    5. Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
    6. Kumar, Suresh & Choudhary, Sangita & Singh, Gurcharan & Singhal, Shelly, 2021. "Crude oil, gold, natural gas, exchange rate and indian stock market: Evidence from the asymmetric nonlinear ARDL model," Resources Policy, Elsevier, vol. 73(C).
    7. Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
    8. Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
    9. Yan Li & Julien Chevallier & Yigang Wei & Jing Li, 2020. "Identifying price bubbles in the US, European and Asian natural gas market: Evidence from a GSADF test approach," Post-Print halshs-04250233, HAL.
    10. Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
    11. Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
    12. Ritu Singh & Debojyoti Das & R. K. Jana & Aviral Kumar Tiwari, 2019. "A wavelet analysis for exploring the relationship between economic policy uncertainty and tourist footfalls in the USA," Current Issues in Tourism, Taylor & Francis Journals, vol. 22(15), pages 1789-1796, September.
    13. Li, Yan & Chevallier, Julien & Wei, Yigang & Li, Jing, 2020. "Identifying price bubbles in the US, European and Asian natural gas market: Evidence from a GSADF test approach," Energy Economics, Elsevier, vol. 87(C).
    14. Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).
    15. R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
    16. Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
    17. Shi, Xunpeng & Shen, Yifan, 2021. "Macroeconomic uncertainty and natural gas prices: Revisiting the Asian Premium," Energy Economics, Elsevier, vol. 94(C).
    18. Linn, Joshua & Muehlenbachs, Lucija, 2018. "The heterogeneous impacts of low natural gas prices on consumers and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 1-28.
    19. Indranil Ghosh & Manas K. Sanyal & R. K. Jana, 2021. "Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 503-527, February.
    20. Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Aviral Kumar & Sharma, Gagan Deep & Rao, Amar & Hossain, Mohammad Razib & Dev, Dhairya, 2024. "Unraveling the crystal ball: Machine learning models for crude oil and natural gas volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
    2. Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
    3. Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
    4. Su, Chi Wei & Qin, Meng & Chang, Hsu-Ling & Țăran, Alexandra-Mădălina, 2023. "Which risks drive European natural gas bubbles? Novel evidence from geopolitics and climate," Resources Policy, Elsevier, vol. 81(C).
    5. Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
    6. Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
    7. Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
    8. Zhang, Lingge & Yang, Dong & Wu, Shining & Luo, Meifeng, 2023. "Revisiting the pricing benchmarks for Asian LNG — An equilibrium analysis," Energy, Elsevier, vol. 262(PA).
    9. Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
    10. Wang, Xiangning & Huang, Qian & Zhang, Shuguang, 2023. "Effects of macroeconomic factors on stock prices for BRICS using the variational mode decomposition and quantile method," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    11. Xiaojie Xu & Yun Zhang, 2023. "Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(4), pages 563-582, December.
    12. Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
    13. Ji, Hao & Naeem, Muhammad & Zhang, Jing & Tiwari, Aviral Kumar, 2024. "Dynamic dependence and spillover among the energy related ETFs: From the hedging effectiveness perspective," Energy Economics, Elsevier, vol. 136(C).
    14. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    15. Pala, Zeydin, 2023. "Comparative study on monthly natural gas vehicle fuel consumption and industrial consumption using multi-hybrid forecast models," Energy, Elsevier, vol. 263(PC).
    16. Ghosh, Indranil & Datta Chaudhuri, Tamal & Alfaro-Cortés, Esteban & Gámez Martínez, Matías & García Rubio, Noelia, 2021. "Estimating the relative effects of raw material prices, sectoral outlook and market sentiment on stock prices," Resources Policy, Elsevier, vol. 73(C).
    17. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    18. Magazzino, Cosimo & Mele, Marco & Schneider, Nicolas, 2021. "A D2C algorithm on the natural gas consumption and economic growth: Challenges faced by Germany and Japan," Energy, Elsevier, vol. 219(C).
    19. Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    20. António Afonso & José Alves & João Jalles & Sofia Monteiro & João Tovar Jalles, 2024. "Energy Price Dynamics in the Face of Uncertainty Shocks and the Role of Exchange Rate Regimes: A Global Cross-Country Analysis," CESifo Working Paper Series 11384, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04492-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.