A residual driven ensemble machine learning approach for forecasting natural gas prices: analyses for pre-and during-COVID-19 phases
Author
Abstract
Suggested Citation
DOI: 10.1007/s10479-021-04492-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Kuan-Ming & Etienne, Xiaoli, 2021. "Do natural hazards in the Gulf Coast still matter for state-level natural gas prices in the US? Evidence after the shale gas boom," Energy Economics, Elsevier, vol. 98(C).
- Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
- Mensi, Walid & Rehman, Mobeen Ur & Maitra, Debasish & Al-Yahyaee, Khamis Hamed & Vo, Xuan Vinh, 2021. "Oil, natural gas and BRICS stock markets: Evidence of systemic risks and co-movements in the time-frequency domain," Resources Policy, Elsevier, vol. 72(C).
- Ritu Singh & Debojyoti Das & R. K. Jana & Aviral Kumar Tiwari, 2019. "A wavelet analysis for exploring the relationship between economic policy uncertainty and tourist footfalls in the USA," Current Issues in Tourism, Taylor & Francis Journals, vol. 22(15), pages 1789-1796, September.
- Avraam, Charalampos & Bistline, John E.T. & Brown, Maxwell & Vaillancourt, Kathleen & Siddiqui, Sauleh, 2021. "North American natural gas market and infrastructure developments under different mechanisms of renewable policy coordination," Energy Policy, Elsevier, vol. 148(PB).
- Li, Yan & Chevallier, Julien & Wei, Yigang & Li, Jing, 2020. "Identifying price bubbles in the US, European and Asian natural gas market: Evidence from a GSADF test approach," Energy Economics, Elsevier, vol. 87(C).
- Liao, Jianhui & Zhu, Xuehong & Chen, Jinyu, 2021. "Dynamic spillovers across oil, gold and stock markets in the presence of major public health emergencies," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Zhou, Huairong & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Li, Hongwei & Liu, Zhiqiang & Yang, Sheng, 2021. "A novel coal chemical looping gasification scheme for synthetic natural gas with low energy consumption for CO2 capture: Modelling, parameters optimization, and performance analysis," Energy, Elsevier, vol. 225(C).
- Jiang, Ping & Liu, Zhenkun & Wang, Jianzhou & Zhang, Lifang, 2021. "Decomposition-selection-ensemble forecasting system for energy futures price forecasting based on multi-objective version of chaos game optimization algorithm," Resources Policy, Elsevier, vol. 73(C).
- R. K. Jana & Indranil Ghosh & Debojyoti Das, 2021. "A differential evolution-based regression framework for forecasting Bitcoin price," Annals of Operations Research, Springer, vol. 306(1), pages 295-320, November.
- Kumar, Suresh & Choudhary, Sangita & Singh, Gurcharan & Singhal, Shelly, 2021. "Crude oil, gold, natural gas, exchange rate and indian stock market: Evidence from the asymmetric nonlinear ARDL model," Resources Policy, Elsevier, vol. 73(C).
- Wang, Jun & Cao, Junxing & Yuan, Shan & Cheng, Ming, 2021. "Short-term forecasting of natural gas prices by using a novel hybrid method based on a combination of the CEEMDAN-SE-and the PSO-ALS-optimized GRU network," Energy, Elsevier, vol. 233(C).
- Shi, Xunpeng & Shen, Yifan, 2021. "Macroeconomic uncertainty and natural gas prices: Revisiting the Asian Premium," Energy Economics, Elsevier, vol. 94(C).
- Linn, Joshua & Muehlenbachs, Lucija, 2018. "The heterogeneous impacts of low natural gas prices on consumers and the environment," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 1-28.
- Lu, Hongfang & Ma, Xin & Azimi, Mohammadamin, 2020. "US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model," Energy, Elsevier, vol. 194(C).
- Zhou, Weijie & Wu, Xiaoli & Ding, Song & Pan, Jiao, 2020. "Application of a novel discrete grey model for forecasting natural gas consumption: A case study of Jiangsu Province in China," Energy, Elsevier, vol. 200(C).
- Indranil Ghosh & Manas K. Sanyal & R. K. Jana, 2021. "Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 503-527, February.
- Wei, Nan & Yin, Lihua & Li, Chao & Li, Changjun & Chan, Christine & Zeng, Fanhua, 2021. "Forecasting the daily natural gas consumption with an accurate white-box model," Energy, Elsevier, vol. 232(C).
- Yan Li & Julien Chevallier & Yigang Wei & Jing Li, 2020. "Identifying price bubbles in the US, European and Asian natural gas market: Evidence from a GSADF test approach," Post-Print halshs-04250233, HAL.
- Li, Jinchao & Wu, Qianqian & Tian, Yu & Fan, Liguo, 2021. "Monthly Henry Hub natural gas spot prices forecasting using variational mode decomposition and deep belief network," Energy, Elsevier, vol. 227(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tiwari, Aviral Kumar & Sharma, Gagan Deep & Rao, Amar & Hossain, Mohammad Razib & Dev, Dhairya, 2024. "Unraveling the crystal ball: Machine learning models for crude oil and natural gas volatility forecasting," Energy Economics, Elsevier, vol. 134(C).
- Xie, Gang & Jiang, Fuxin & Zhang, Chengyuan, 2023. "A secondary decomposition-ensemble methodology for forecasting natural gas prices using multisource data," Resources Policy, Elsevier, vol. 85(PA).
- Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
- Xu, Zhiwei & Wang, Xuefei & Zhang, Teng, 2024. "The international natural gas price and its cross-sectional pricing implication: Evidence from Chinese stock market," Energy, Elsevier, vol. 313(C).
- Su, Chi Wei & Qin, Meng & Chang, Hsu-Ling & Țăran, Alexandra-Mădălina, 2023. "Which risks drive European natural gas bubbles? Novel evidence from geopolitics and climate," Resources Policy, Elsevier, vol. 81(C).
- Faramarz Saghi & Mustafa Jahangoshai Rezaee, 2023. "Integrating Wavelet Decomposition and Fuzzy Transformation for Improving the Accuracy of Forecasting Crude Oil Price," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 559-591, February.
- Bingzi Jin & Xiaojie Xu, 2025. "Machine learning price index forecasts of flat steel products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 38(1), pages 97-117, March.
- Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
- Lahmiri, Salim, 2024. "Fossil energy market price prediction by using machine learning with optimal hyper-parameters: A comparative study," Resources Policy, Elsevier, vol. 92(C).
- Zhang, Lingge & Yang, Dong & Wu, Shining & Luo, Meifeng, 2023. "Revisiting the pricing benchmarks for Asian LNG — An equilibrium analysis," Energy, Elsevier, vol. 262(PA).
- Wang, Tiantian & Qu, Wan & Zhang, Dayong & Ji, Qiang & Wu, Fei, 2022. "Time-varying determinants of China's liquefied natural gas import price: A dynamic model averaging approach," Energy, Elsevier, vol. 259(C).
- Wang, Xiangning & Huang, Qian & Zhang, Shuguang, 2023. "Effects of macroeconomic factors on stock prices for BRICS using the variational mode decomposition and quantile method," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
- Lupu, Radu & Călin, Adrian Cantemir & Dumitrescu, Dan Gabriel & Lupu, Iulia, 2025. "Introducing a novel fragility index for assessing financial stability amid asset bubble episodes," The North American Journal of Economics and Finance, Elsevier, vol. 75(PA).
- Indranil Ghosh & Amith Vikram Megaravalli & Mohammad Zoynul Abedin & Kazim Topuz, 2025. "Prediction and decoding of metaverse coin dynamics: a granular quest using MODWT-Facebook’s prophet-TBATS and XAI methodology," Annals of Operations Research, Springer, vol. 346(3), pages 2423-2459, March.
- Xiaojie Xu & Yun Zhang, 2023. "Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(4), pages 563-582, December.
- Yang, Wendong & Sun, Shaolong & Hao, Yan & Wang, Shouyang, 2022. "A novel machine learning-based electricity price forecasting model based on optimal model selection strategy," Energy, Elsevier, vol. 238(PC).
- Ji, Hao & Naeem, Muhammad & Zhang, Jing & Tiwari, Aviral Kumar, 2024. "Dynamic dependence and spillover among the energy related ETFs: From the hedging effectiveness perspective," Energy Economics, Elsevier, vol. 136(C).
- Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
- Pala, Zeydin, 2023. "Comparative study on monthly natural gas vehicle fuel consumption and industrial consumption using multi-hybrid forecast models," Energy, Elsevier, vol. 263(PC).
- Li, Beibei & Chen, Yiming & Wu, Haipeng & Mao, Xuefeng, 2025. "Macroeconomics, geopolitical risk, and resource commodity price bubbles," Resources Policy, Elsevier, vol. 101(C).
More about this item
Keywords
Natural gas futures; COVID-19; Ensemble machine learning; Residual; Boruta; Maximal Overlap Discrete Wavelet Transformation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:345:y:2025:i:2:d:10.1007_s10479-021-04492-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.