IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i24p4897-d1295757.html
   My bibliography  Save this article

Optimal Shipping Route under the Designation of the Mediterranean Sulfur Emission Control Area: Mathematical Models and Applications

Author

Listed:
  • Haoqing Wang

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, China
    These authors contributed equally to this work.)

  • Yuan Liu

    (School of Economics and Management, Wuhan University, Wuhan 430072, China
    These authors contributed equally to this work.)

  • Ying Yang

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, China
    These authors contributed equally to this work.)

  • Ran Yan

    (School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 636921, Singapore
    These authors contributed equally to this work.)

  • Shuaian Wang

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, China)

Abstract

In order to tackle sulfur oxides ( SO x ) emissions from maritime activities, both local governmental bodies and the International Maritime Organization (IMO) have implemented a range of regulations with the establishment of sulfur emission control areas (SECAs) being one crucial measure. Recently, the IMO made the significant decision to designate the Mediterranean as an SECA, aiming to promote environmental conservation as well as sustainable development in the maritime industry and mitigate the adverse health effects caused by air pollutants emitted from ships in Mediterranean regions. While this policy signifies significant progress in the reduction of sulfur emissions, it simultaneously presents intricate challenges for maritime enterprises. Notably, under the Mediterranean SECA designation, shipping companies may opt to bypass this region and choose routes through the Cape of Good Hope as a means of minimizing the overall costs, resulting in a potential increase in global carbon emissions. To support shipping companies in formulating optimal strategies within the framework of this new policy, the research introduces advanced techniques to make the optimal decisions concerning route selection, sailing speeds, and the appropriate number of ships for both SECAs and non-SECAs. Furthermore, we elucidate how these optimal decisions can be dynamically adapted in response to the dynamic fluctuations in fuel prices and the weekly operational expenditures incurred by maritime fleets. In the experimental results, taking into account factors like route distance and fuel costs, shipping companies select routes through the Mediterranean region in both eastward and westward directions. The total cost amounts to $6,558,766.78, utilizing eight vessels. Regarding ship speeds, vessels sail at reduced speeds in SECAs compared to non-SECAs. Furthermore, longer voyage distances require deploying a greater number of ships to maintain a weekly service frequency. This research exhibits robust timeliness and practicality, which is in line with practice. It not only timely supplements and enhances the extant body of knowledge concerning SECAs but also serves as a valuable point of reference and emulation for shipping companies seeking to optimize their operations within the framework of the new policy landscape. Furthermore, it offers pertinent insights for the IMO in formulating policies related to SECAs.

Suggested Citation

  • Haoqing Wang & Yuan Liu & Ying Yang & Ran Yan & Shuaian Wang, 2023. "Optimal Shipping Route under the Designation of the Mediterranean Sulfur Emission Control Area: Mathematical Models and Applications," Mathematics, MDPI, vol. 11(24), pages 1-21, December.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4897-:d:1295757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/24/4897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/24/4897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tran, Nguyen Khoi & Haasis, Hans-Dietrich, 2015. "An empirical study of fleet expansion and growth of ship size in container liner shipping," International Journal of Production Economics, Elsevier, vol. 159(C), pages 241-253.
    2. Wang, Shuaian & Meng, Qiang, 2012. "Sailing speed optimization for container ships in a liner shipping network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(3), pages 701-714.
    3. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Bunker consumption optimization methods in shipping: A critical review and extensions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 49-62.
    4. Irion, Jens & Lu, Jye-Chyi & Al-Khayyal, Faiz & Tsao, Yu-Chung, 2012. "A piecewise linearization framework for retail shelf space management models," European Journal of Operational Research, Elsevier, vol. 222(1), pages 122-136.
    5. D Ronen, 2011. "The effect of oil price on containership speed and fleet size," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 211-216, January.
    6. Marjorie Doudnikoff & Romuald Lacoste, 2014. "Effect of a speed reduction of containerships in response to higher energy costs in sulphur emission control areas," Post-Print hal-04092743, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asghari, Mohammad & Jaber, Mohamad Y. & Mirzapour Al-e-hashem, S.M.J., 2023. "Coordinating vessel recovery actions: Analysis of disruption management in a liner shipping service," European Journal of Operational Research, Elsevier, vol. 307(2), pages 627-644.
    2. Wang, Shuaian & Qu, Xiaobo & Yang, Ying, 2015. "Estimation of the perceived value of transit time for containerized cargoes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 298-308.
    3. Wang, Shuaian & Meng, Qiang, 2015. "Robust bunker management for liner shipping networks," European Journal of Operational Research, Elsevier, vol. 243(3), pages 789-797.
    4. Wu, Wei-Ming, 2020. "The optimal speed in container shipping: Theory and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    5. Gu, Yewen & Wallace, Stein W. & Wang, Xin, 2016. "Integrated maritime bunker management with stochastic fuel prices and new emission regulations," Discussion Papers 2016/13, Norwegian School of Economics, Department of Business and Management Science.
    6. Meng, Qiang & Du, Yuquan & Wang, Yadong, 2016. "Shipping log data based container ship fuel efficiency modeling," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 207-229.
    7. Pierre, Cariou & Francesco, Parola & Theo, Notteboom, 2019. "Towards low carbon global supply chains: A multi-trade analysis of CO2 emission reductions in container shipping," International Journal of Production Economics, Elsevier, vol. 208(C), pages 17-28.
    8. Olumide F. Abioye & Maxim A. Dulebenets & Junayed Pasha & Masoud Kavoosi, 2019. "A Vessel Schedule Recovery Problem at the Liner Shipping Route with Emission Control Areas," Energies, MDPI, vol. 12(12), pages 1-28, June.
    9. Dulebenets, Maxim A., 2018. "A comprehensive multi-objective optimization model for the vessel scheduling problem in liner shipping," International Journal of Production Economics, Elsevier, vol. 196(C), pages 293-318.
    10. Li, Chen & Qi, Xiangtong & Song, Dongping, 2016. "Real-time schedule recovery in liner shipping service with regular uncertainties and disruption events," Transportation Research Part B: Methodological, Elsevier, vol. 93(PB), pages 762-788.
    11. Zhang, Abraham & Zheng, Zhichao & Teo, Chung-Piaw, 2022. "Schedule reliability in liner shipping timetable design: A convex programming approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 499-525.
    12. He, Qie & Zhang, Xiaochen & Nip, Kameng, 2017. "Speed optimization over a path with heterogeneous arc costs," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 198-214.
    13. Wang, Shuaian & Meng, Qiang, 2012. "Liner ship route schedule design with sea contingency time and port time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(5), pages 615-633.
    14. Shuaian Wang & Dan Zhuge & Lu Zhen & Chung-Yee Lee, 2021. "Liner Shipping Service Planning Under Sulfur Emission Regulations," Transportation Science, INFORMS, vol. 55(2), pages 491-509, March.
    15. Wang, Shuaian & Meng, Qiang & Liu, Zhiyuan, 2013. "Bunker consumption optimization methods in shipping: A critical review and extensions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 49-62.
    16. Zhen, Lu & Shen, Tao & Wang, Shuaian & Yu, Shucheng, 2016. "Models on ship scheduling in transshipment hubs with considering bunker cost," International Journal of Production Economics, Elsevier, vol. 173(C), pages 111-121.
    17. Yan, Ran & Wang, Shuaian & Du, Yuquan, 2020. "Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    18. Hamed Hasheminia & Changmin Jiang, 2017. "Strategic trade-off between vessel delay and schedule recovery: an empirical analysis of container liner shipping," Maritime Policy & Management, Taylor & Francis Journals, vol. 44(4), pages 458-473, May.
    19. Wang, Shuaian & Meng, Qiang & Sun, Zhuo, 2013. "Container routing in liner shipping," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 1-7.
    20. Sheng, Dian & Li, Zhi-Chun & Fu, Xiaowen & Gillen, David, 2017. "Modeling the effects of unilateral and uniform emission regulations under shipping company and port competition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 99-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:24:p:4897-:d:1295757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.