IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i7p1065-d779799.html
   My bibliography  Save this article

Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete

Author

Listed:
  • Alexandros Paspatis

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece)

  • Konstantinos Fiorentzis

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece)

  • Yiannis Katsigiannis

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece)

  • Emmanuel Karapidakis

    (Department of Electrical and Computer Engineering, Hellenic Mediterranean University, GR-71410 Heraklion, Greece)

Abstract

Smart campus microgrids are considered in this paper, with the aim of highlighting their applicability in the framework of the sustainable energy transition. In particular, the campus of the Hellenic Mediterranean University (HMU) in Heraklion, Crete, Greece, is selected as a case study to highlight the multiple campus microgrids’ advantages. Crete represents an interesting insular power system case, due to the high renewable energy sources capacity and the large summer tourism industry. There is also a high density of university and research campuses, making the campus microgrid concept a promising solution for the energy transition and decarbonization of the island. In this sense, policy directions that could facilitate the development of the smart campus microgrid are also given, to motivate areas with similar characteristics. For the performed case study, the HMU microgrid is assumed to consist of PV systems, wind turbines, battery energy storage systems and EV chargers. The analysis explores the financial feasibility and environmental impact of such an investment through the optimal sizing of the systems under investigation, while a sensitivity analysis regarding the battery system cost is also performed. Apart from the financial benefits of the investment, it is evident that the main grid experiences a significant load reduction, with the microgrid acting as a RES producer for many hours, hence improving system adequacy. Moreover, it is shown that the location of HMU makes the investment more sustainable compared to other locations in northern Europe, such as Stockholm and London. The methodology and the derived results are expected to motivate such investments, especially in areas with high RES capacity and a high density of university and research campuses.

Suggested Citation

  • Alexandros Paspatis & Konstantinos Fiorentzis & Yiannis Katsigiannis & Emmanuel Karapidakis, 2022. "Smart Campus Microgrids towards a Sustainable Energy Transition—The Case Study of the Hellenic Mediterranean University in Crete," Mathematics, MDPI, vol. 10(7), pages 1-19, March.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1065-:d:779799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/7/1065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/7/1065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed A. Hassan & Muhammed Y. Worku & Abdelfattah A. Eladl & Mohammed A. Abido, 2021. "Dynamic Stability Performance of Autonomous Microgrid Involving High Penetration Level of Constant Power Loads," Mathematics, MDPI, vol. 9(9), pages 1-23, April.
    2. Husein, Munir & Chung, Il-Yop, 2018. "Optimal design and financial feasibility of a university campus microgrid considering renewable energy incentives," Applied Energy, Elsevier, vol. 225(C), pages 273-289.
    3. Kourgiozou, Vasiliki & Commin, Andrew & Dowson, Mark & Rovas, Dimitrios & Mumovic, Dejan, 2021. "Scalable pathways to net zero carbon in the UK higher education sector: A systematic review of smart energy systems in university campuses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Haseeb Javed & Hafiz Abdul Muqeet & Moazzam Shehzad & Mohsin Jamil & Ashraf Ali Khan & Josep M. Guerrero, 2021. "Optimal Energy Management of a Campus Microgrid Considering Financial and Economic Analysis with Demand Response Strategies," Energies, MDPI, vol. 14(24), pages 1-24, December.
    5. Sooyoung Jung & Yong Tae Yoon & Jun-Ho Huh, 2020. "An Efficient Micro Grid Optimization Theory," Mathematics, MDPI, vol. 8(4), pages 1-21, April.
    6. Hafiz Abdul Muqeet & Hafiz Mudassir Munir & Haseeb Javed & Muhammad Shahzad & Mohsin Jamil & Josep M. Guerrero, 2021. "An Energy Management System of Campus Microgrids: State-of-the-Art and Future Challenges," Energies, MDPI, vol. 14(20), pages 1-34, October.
    7. Gamarra, Carlos & Guerrero, Josep M., 2015. "Computational optimization techniques applied to microgrids planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 413-424.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian Maurer & Christian Rieke & Ralf Schemm & Dominik Stollenwerk, 2023. "Analysis of an Urban Grid with High Photovoltaic and e-Mobility Penetration," Energies, MDPI, vol. 16(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Burmester, Daniel, 2020. "A comparison of metaheuristics for the optimal capacity planning of an isolated, battery-less, hydrogen-based micro-grid," Applied Energy, Elsevier, vol. 259(C).
    2. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    3. Amir, Vahid & Azimian, Mahdi, 2020. "Dynamic Multi-Carrier Microgrid Deployment Under Uncertainty," Applied Energy, Elsevier, vol. 260(C).
    4. Zheng, Shiyong & Shahzad, Muhammad & Asif, Hafiz Muhammad & Gao, Jing & Muqeet, Hafiz Abdul, 2023. "Advanced optimizer for maximum power point tracking of photovoltaic systems in smart grid: A roadmap towards clean energy technologies," Renewable Energy, Elsevier, vol. 206(C), pages 1326-1335.
    5. Amad Ali & Hafiz Abdul Muqeet & Tahir Khan & Asif Hussain & Muhammad Waseem & Kamran Ali Khan Niazi, 2023. "IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study," Energies, MDPI, vol. 16(4), pages 1-19, February.
    6. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    7. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    8. Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Assessment of optimization algorithms capability in distribution network planning: Review, comparison and modification techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 415-434.
    9. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    10. Thomas Sachs & Anna Gründler & Milos Rusic & Gilbert Fridgen, 2019. "Framing Microgrid Design from a Business and Information Systems Engineering Perspective," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(6), pages 729-744, December.
    11. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    12. Igyso Zafeiratou & Ionela Prodan & Laurent Lefévre, 2021. "A Hierarchical Control Approach for Power Loss Minimization and Optimal Power Flow within a Meshed DC Microgrid," Energies, MDPI, vol. 14(16), pages 1-27, August.
    13. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    14. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    15. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    16. García-Villoria, Alberto & Domenech, Bruno & Ferrer-Martí, Laia & Juanpera, Marc & Pastor, Rafael, 2020. "Ad-hoc heuristic for design of wind-photovoltaic electrification systems, including management constraints," Energy, Elsevier, vol. 212(C).
    17. Duccio Baldi & Magda Moner-Girona & Elena Fumagalli & Fernando Fahl, 2022. "Planning sustainable electricity solutions for refugee settlements in sub-Saharan Africa," Nature Energy, Nature, vol. 7(4), pages 369-379, April.
    18. Azimian, Mahdi & Amir, Vahid & Javadi, Saeid, 2020. "Economic and Environmental Policy Analysis for Emission-Neutral Multi-Carrier Microgrid Deployment," Applied Energy, Elsevier, vol. 277(C).
    19. Muhammad Shahid Mastoi & Hafiz Mudassir Munir & Shenxian Zhuang & Mannan Hassan & Muhammad Usman & Ahmad Alahmadi & Basem Alamri, 2022. "A Comprehensive Analysis of the Power Demand–Supply Situation, Electricity Usage Patterns, and the Recent Development of Renewable Energy in China," Sustainability, MDPI, vol. 14(6), pages 1-34, March.
    20. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:7:p:1065-:d:779799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.