IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4529-d989237.html
   My bibliography  Save this article

Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems

Author

Listed:
  • Marcelo Becerra-Rozas

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Felipe Cisternas-Caneo

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Broderick Crawford

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Ricardo Soto

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • José García

    (Escuela de Ingeniería de Construcción y Transporte, Pontificia Universidad Católica de Valparaíso, Avenida Brasil 2147, Valparaíso 2362807, Chile)

  • Gino Astorga

    (Escuela de Negocios Internacionales, Universidad de Valparaíso, Viña del Mar 2572048, Chile)

  • Wenceslao Palma

    (Escuela de Ingeniería Informática, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

Abstract

When we face real problems using computational resources, we understand that it is common to find combinatorial problems in binary domains. Moreover, we have to take into account a large number of possible candidate solutions, since these can be numerous and make it complicated for classical algorithmic techniques to address them. When this happens, in most cases, it becomes a problem due to the high resource cost they generate, so it is of utmost importance to solve these problems efficiently. To cope with this problem, we can apply other methods, such as metaheuristics. There are some metaheuristics that allow operation in discrete search spaces; however, in the case of continuous swarm intelligence metaheuristics, it is necessary to adapt them to operate in discrete domains. To perform this adaptation, it is necessary to use a binary scheme to take advantage of the original moves of the metaheuristics designed for continuous problems. In this work, we propose to hybridize the whale optimization algorithm metaheuristic with the Q-learning reinforcement learning technique, which we call (the QBWOA). By using this technique, we are able to realize an smart and fully online binarization scheme selector, the results have been statistically promising thanks to the respective tables and graphs.

Suggested Citation

  • Marcelo Becerra-Rozas & Felipe Cisternas-Caneo & Broderick Crawford & Ricardo Soto & José García & Gino Astorga & Wenceslao Palma, 2022. "Embedded Learning Approaches in the Whale Optimizer to Solve Coverage Combinatorial Problems," Mathematics, MDPI, vol. 10(23), pages 1-18, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4529-:d:989237
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    2. Zhang, Li & Shaffer, Brendan & Brown, Tim & Scott Samuelsen, G., 2015. "The optimization of DC fast charging deployment in California," Applied Energy, Elsevier, vol. 157(C), pages 111-122.
    3. José Lemus-Romani & Marcelo Becerra-Rozas & Broderick Crawford & Ricardo Soto & Felipe Cisternas-Caneo & Emanuel Vega & Mauricio Castillo & Diego Tapia & Gino Astorga & Wenceslao Palma & Carlos Castro, 2021. "A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems," Mathematics, MDPI, vol. 9(22), pages 1-41, November.
    4. Jose M. Lanza-Gutierrez & N. C. Caballe & Broderick Crawford & Ricardo Soto & Juan A. Gomez-Pulido & Fernando Paredes, 2020. "Exploring Further Advantages in an Alternative Formulation for the Set Covering Problem," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-24, July.
    5. El-Ghazali Talbi, 2016. "Combining metaheuristics with mathematical programming, constraint programming and machine learning," Annals of Operations Research, Springer, vol. 240(1), pages 171-215, May.
    6. Beasley, J. E. & Jornsten, K., 1992. "Enhancing an algorithm for set covering problems," European Journal of Operational Research, Elsevier, vol. 58(2), pages 293-300, April.
    7. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruiheng Li & Yi Di & Qiankun Zuo & Hao Tian & Lu Gan, 2023. "Enhanced Whale Optimization Algorithm for Improved Transient Electromagnetic Inversion in the Presence of Induced Polarization Effects," Mathematics, MDPI, vol. 11(19), pages 1-20, October.
    2. Chia-Hung Wang & Shumeng Chen & Qigen Zhao & Yifan Suo, 2023. "An Efficient End-to-End Obstacle Avoidance Path Planning Algorithm for Intelligent Vehicles Based on Improved Whale Optimization Algorithm," Mathematics, MDPI, vol. 11(8), pages 1-31, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pasdeloup, Bastien & Meyer, Patrick, 2023. "Learning to select operators in meta-heuristics: An integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1296-1330.
    2. José Lemus-Romani & Marcelo Becerra-Rozas & Broderick Crawford & Ricardo Soto & Felipe Cisternas-Caneo & Emanuel Vega & Mauricio Castillo & Diego Tapia & Gino Astorga & Wenceslao Palma & Carlos Castro, 2021. "A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems," Mathematics, MDPI, vol. 9(22), pages 1-41, November.
    3. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Meyer, Patrick & Karimi-Mamaghan, Amir Mohammad & Talbi, El-Ghazali, 2022. "Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art," European Journal of Operational Research, Elsevier, vol. 296(2), pages 393-422.
    4. José García & José Lemus-Romani & Francisco Altimiras & Broderick Crawford & Ricardo Soto & Marcelo Becerra-Rozas & Paola Moraga & Alex Paz Becerra & Alvaro Peña Fritz & Jose-Miguel Rubio & Gino Astor, 2021. "A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem," Mathematics, MDPI, vol. 9(20), pages 1-19, October.
    5. Neaimeh, Myriam & Salisbury, Shawn D. & Hill, Graeme A. & Blythe, Philip T. & Scoffield, Don R. & Francfort, James E., 2017. "Analysing the usage and evidencing the importance of fast chargers for the adoption of battery electric vehicles," Energy Policy, Elsevier, vol. 108(C), pages 474-486.
    6. Noel, Lance & Papu Carrone, Andrea & Jensen, Anders Fjendbo & Zarazua de Rubens, Gerardo & Kester, Johannes & Sovacool, Benjamin K., 2019. "Willingness to pay for electric vehicles and vehicle-to-grid applications: A Nordic choice experiment," Energy Economics, Elsevier, vol. 78(C), pages 525-534.
    7. Arlt, Marie-Louise & Astier, Nicolas, 2023. "Do retail businesses have efficient incentives to invest in public charging stations for electric vehicles?," Energy Economics, Elsevier, vol. 124(C).
    8. Beasley, J. E. & Chu, P. C., 1996. "A genetic algorithm for the set covering problem," European Journal of Operational Research, Elsevier, vol. 94(2), pages 392-404, October.
    9. Lawrence Bodin & Aristide Mingozzi & Roberto Baldacci & Michael Ball, 2000. "The Rollon–Rolloff Vehicle Routing Problem," Transportation Science, INFORMS, vol. 34(3), pages 271-288, August.
    10. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    11. Franco Peschiera & Robert Dell & Johannes Royset & Alain Haït & Nicolas Dupin & Olga Battaïa, 2021. "A novel solution approach with ML-based pseudo-cuts for the Flight and Maintenance Planning problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 635-664, September.
    12. Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
    13. José García & Victor Yepes & José V. Martí, 2020. "A Hybrid k-Means Cuckoo Search Algorithm Applied to the Counterfort Retaining Walls Problem," Mathematics, MDPI, vol. 8(4), pages 1-22, April.
    14. Philippe Racette & Frédéric Quesnel & Andrea Lodi & François Soumis, 2024. "Gaining insight into crew rostering instances through ML-based sequential assignment," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(3), pages 537-578, October.
    15. Patrizia Beraldi & Andrzej Ruszczyński, 2002. "The Probabilistic Set-Covering Problem," Operations Research, INFORMS, vol. 50(6), pages 956-967, December.
    16. Václavík, Roman & Novák, Antonín & Šůcha, Přemysl & Hanzálek, Zdeněk, 2018. "Accelerating the Branch-and-Price Algorithm Using Machine Learning," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1055-1069.
    17. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    18. Li, Zixiang & Kucukkoc, Ibrahim & Zhang, Zikai, 2020. "Branch, bound and remember algorithm for two-sided assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 896-905.
    19. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    20. Ferdinando Pezzella & Enrico Faggioli, 1997. "Solving large set covering problems for crew scheduling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 5(1), pages 41-59, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4529-:d:989237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.