IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v284y2020i3p896-905.html
   My bibliography  Save this article

Branch, bound and remember algorithm for two-sided assembly line balancing problem

Author

Listed:
  • Li, Zixiang
  • Kucukkoc, Ibrahim
  • Zhang, Zikai

Abstract

This research presents a new branch, bound and remember (BBR) algorithm to minimize the number of mated-stations in two-sided assembly lines. The proposed methodology modifies the Hoffman heuristic to achieve high-quality upper bounds, and employs two new dominance rules, referred to as memory-based maximal load rule and memory-based extended Jackson rule, to prune the sub-problems. The BBR algorithm also employs several other improvements to enhance the performance, including renumbering the tasks and new lower bounds. Computational results demonstrate that BBR achieves the optimal solutions for all the tested instances within 1.0 s on average, including two optimal solutions for the first time. Comparative study shows that BBR outperforms the current best exact method (branch and bound algorithm) and the current best heuristic algorithm (iterated greedy search algorithm). As a consequence, the proposed BBR can be regarded as the state-of-the-art method for TALBP.

Suggested Citation

  • Li, Zixiang & Kucukkoc, Ibrahim & Zhang, Zikai, 2020. "Branch, bound and remember algorithm for two-sided assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 896-905.
  • Handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:896-905
    DOI: 10.1016/j.ejor.2020.01.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720300539
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.01.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas R. Hoffmann, 1963. "Assembly Line Balancing with a Precedence Matrix," Management Science, INFORMS, vol. 9(4), pages 551-562, July.
    2. Mosadegh, H. & Fatemi Ghomi, S.M.T. & Süer, G.A., 2020. "Stochastic mixed-model assembly line sequencing problem: Mathematical modeling and Q-learning based simulated annealing hyper-heuristics," European Journal of Operational Research, Elsevier, vol. 282(2), pages 530-544.
    3. Armin Scholl & Robert Klein, 1997. "SALOME: A Bidirectional Branch-and-Bound Procedure for Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 9(4), pages 319-334, November.
    4. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    5. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    6. Hu, Xiaofeng & Wu, Erfei & Jin, Ye, 2008. "A station-oriented enumerative algorithm for two-sided assembly line balancing," European Journal of Operational Research, Elsevier, vol. 186(1), pages 435-440, April.
    7. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    8. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    9. Scholl, Armin & Klein, Robert, 1997. "SALOME. a bidirectional branch and bound procedure for assembly line balancing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7890, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    11. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan & Mehmet Sıtkı İlkay, 2017. "A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 23-36, January.
    12. Morrison, David R. & Sewell, Edward C. & Jacobson, Sheldon H., 2014. "An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset," European Journal of Operational Research, Elsevier, vol. 236(2), pages 403-409.
    13. Scholl, Armin & Klein, Robert, 1999. "Balancing assembly lines effectively - A computational comparison," European Journal of Operational Research, Elsevier, vol. 114(1), pages 50-58, April.
    14. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.
    15. Roger V. Johnson, 1988. "Optimally Balancing Large Assembly Lines with "Fable"," Management Science, INFORMS, vol. 34(2), pages 240-253, February.
    16. Vilà, Mariona & Pereira, Jordi, 2013. "An enumeration procedure for the assembly line balancing problem based on branching by non-decreasing idle time," European Journal of Operational Research, Elsevier, vol. 229(1), pages 106-113.
    17. Xiaofeng, Hu & Erfei, Wu & Jinsong, Bao & Ye, Jin, 2010. "A branch-and-bound algorithm to minimize the line length of a two-sided assembly line," European Journal of Operational Research, Elsevier, vol. 206(3), pages 703-707, November.
    18. Thomas R. Hoffmann, 1992. "Eureka: A Hybrid System for Assembly Line Balancing," Management Science, INFORMS, vol. 38(1), pages 39-47, January.
    19. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan, 2016. "Stochastic two-sided U-type assembly line balancing: a genetic algorithm approach," International Journal of Production Research, Taylor & Francis Journals, vol. 54(11), pages 3429-3451, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junyong Liang & Shunsheng Guo & Yunfei Zhang & Wenfang Liu & Shengwen Zhou, 2021. "Energy-Efficient Optimization of Two-Sided Disassembly Line Balance Considering Parallel Operation and Uncertain Using Multiobjective Flatworm Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    2. Peng Hu & Feng Chu & Yunfei Fang & Peng Wu, 2022. "Novel distribution-free model and method for stochastic disassembly line balancing with limited distributional information," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1423-1446, July.
    3. Santiago Valdés Ravelo, 2022. "Approximation algorithms for simple assembly line balancing problems," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 432-443, March.
    4. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    5. Rapeepan Pitakaso & Kanchana Sethanan & Ganokgarn Jirasirilerd & Paulina Golinska-Dawson, 2023. "A novel variable neighborhood strategy adaptive search for SALBP-2 problem with a limit on the number of machine’s types," Annals of Operations Research, Springer, vol. 324(1), pages 1501-1525, May.
    6. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    2. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    3. Morrison, David R. & Sewell, Edward C. & Jacobson, Sheldon H., 2014. "An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset," European Journal of Operational Research, Elsevier, vol. 236(2), pages 403-409.
    4. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    5. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    6. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    7. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    8. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    9. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    10. Michels, Adalberto Sato & Lopes, Thiago Cantos & Sikora, Celso Gustavo Stall & Magatão, Leandro, 2019. "A Benders’ decomposition algorithm with combinatorial cuts for the multi-manned assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 278(3), pages 796-808.
    11. Fleszar, Krzysztof & Hindi, Khalil S., 2003. "An enumerative heuristic and reduction methods for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 606-620, March.
    12. Scholl, Armin & Klein, Robert, 1999. "Balancing assembly lines effectively - A computational comparison," European Journal of Operational Research, Elsevier, vol. 114(1), pages 50-58, April.
    13. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    14. Aase, Gerald R. & Olson, John R. & Schniederjans, Marc J., 2004. "U-shaped assembly line layouts and their impact on labor productivity: An experimental study," European Journal of Operational Research, Elsevier, vol. 156(3), pages 698-711, August.
    15. Raphael Kramer & Mauro Dell’Amico & Manuel Iori, 2017. "A batching-move iterated local search algorithm for the bin packing problem with generalized precedence constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6288-6304, November.
    16. Vilà, Mariona & Pereira, Jordi, 2013. "An enumeration procedure for the assembly line balancing problem based on branching by non-decreasing idle time," European Journal of Operational Research, Elsevier, vol. 229(1), pages 106-113.
    17. Peeters, Marc & Degraeve, Zeger, 2006. "An linear programming based lower bound for the simple assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 716-731, February.
    18. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    19. Christian Blum, 2008. "Beam-ACO for Simple Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 618-627, November.
    20. Schulze, Philipp & Scholl, Armin & Walter, Rico, 2024. "R-SALSA: A branch, bound, and remember algorithm for the workload smoothing problem on simple assembly lines," European Journal of Operational Research, Elsevier, vol. 312(1), pages 38-55.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:284:y:2020:i:3:p:896-905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.