IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v229y2013i1p106-113.html
   My bibliography  Save this article

An enumeration procedure for the assembly line balancing problem based on branching by non-decreasing idle time

Author

Listed:
  • Vilà, Mariona
  • Pereira, Jordi

Abstract

In this article, we present a new exact algorithm for solving the simple assembly line balancing problem given a determined cycle time (SALBP-1). The algorithm is a station-oriented bidirectional branch-and-bound procedure based on a new enumeration strategy that explores the feasible solutions tree in a non-decreasing idle time order. The procedure uses several well-known lower bounds, dominance rules and a new logical test based on the assimilation of the feasibility problem for a given cycle time and number of stations (SALBP-F) to a maximum-flow problem.

Suggested Citation

  • Vilà, Mariona & Pereira, Jordi, 2013. "An enumeration procedure for the assembly line balancing problem based on branching by non-decreasing idle time," European Journal of Operational Research, Elsevier, vol. 229(1), pages 106-113.
  • Handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:106-113
    DOI: 10.1016/j.ejor.2013.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713002117
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thomas R. Hoffmann, 1963. "Assembly Line Balancing with a Precedence Matrix," Management Science, INFORMS, vol. 9(4), pages 551-562, July.
    2. Armin Scholl & Robert Klein, 1997. "SALOME: A Bidirectional Branch-and-Bound Procedure for Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 9(4), pages 319-334, November.
    3. Berger, Ilana & Bourjolly, Jean-Marie & Laporte, Gilbert, 1992. "Branch-and-bound algorithms for the multi-product assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 58(2), pages 215-222, April.
    4. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    5. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    6. Scholl, Armin, 1995. "Balancing and sequencing of assembly lines," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 9690, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    7. Scholl, Armin & Klein, Robert, 1997. "SALOME. a bidirectional branch and bound procedure for assembly line balancing," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 7890, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    8. Michael Held & Richard M. Karp & Richard Shareshian, 1963. "Assembly-Line Balancing---Dynamic Programming with Precedence Constraints," Operations Research, INFORMS, vol. 11(3), pages 442-459, June.
    9. Roger V. Johnson, 1988. "Optimally Balancing Large Assembly Lines with "Fable"," Management Science, INFORMS, vol. 34(2), pages 240-253, February.
    10. F. Brian Talbot & James H. Patterson & William V. Gehrlein, 1986. "A Comparative Evaluation of Heuristic Line Balancing Techniques," Management Science, INFORMS, vol. 32(4), pages 430-454, April.
    11. Christian Blum, 2008. "Beam-ACO for Simple Assembly Line Balancing," INFORMS Journal on Computing, INFORMS, vol. 20(4), pages 618-627, November.
    12. Linus Schrage & Kenneth R. Baker, 1978. "Dynamic Programming Solution of Sequencing Problems with Precedence Constraints," Operations Research, INFORMS, vol. 26(3), pages 444-449, June.
    13. Thomas R. Hoffmann, 1992. "Eureka: A Hybrid System for Assembly Line Balancing," Management Science, INFORMS, vol. 38(1), pages 39-47, January.
    14. Fleszar, Krzysztof & Hindi, Khalil S., 2003. "An enumerative heuristic and reduction methods for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 606-620, March.
    15. James R. Jackson, 1956. "A Computing Procedure for a Line Balancing Problem," Management Science, INFORMS, vol. 2(3), pages 261-271, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    2. Li, Zixiang & Kucukkoc, Ibrahim & Zhang, Zikai, 2020. "Branch, bound and remember algorithm for two-sided assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 896-905.
    3. Borba, Leonardo & Ritt, Marcus & Miralles, Cristóbal, 2018. "Exact and heuristic methods for solving the Robotic Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 270(1), pages 146-156.
    4. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    5. Pereira, Jordi & Álvarez-Miranda, Eduardo, 2018. "An exact approach for the robust assembly line balancing problem," Omega, Elsevier, vol. 78(C), pages 85-98.
    6. Pereira, Jordi, 2016. "Procedures for the bin packing problem with precedence constraints," European Journal of Operational Research, Elsevier, vol. 250(3), pages 794-806.
    7. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    8. Calleja, Gema & Corominas, Albert & García-Villoria, Alberto & Pastor, Rafael, 2016. "Hybrid metaheuristics for the Accessibility Windows Assembly Line Balancing Problem Level 2 (AWALBP-L2)," European Journal of Operational Research, Elsevier, vol. 250(3), pages 760-772.
    9. Jordi Pereira & Mariona Vilà, 2016. "A new model for supply chain network design with integrated assembly line balancing decisions," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2653-2669, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Battaïa, Olga & Dolgui, Alexandre, 2013. "A taxonomy of line balancing problems and their solutionapproaches," International Journal of Production Economics, Elsevier, vol. 142(2), pages 259-277.
    2. Scholl, Armin & Becker, Christian, 2006. "State-of-the-art exact and heuristic solution procedures for simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 168(3), pages 666-693, February.
    3. Bautista, Joaquín & Pereira, Jordi, 2011. "Procedures for the Time and Space constrained Assembly Line Balancing Problem," European Journal of Operational Research, Elsevier, vol. 212(3), pages 473-481, August.
    4. E. C. Sewell & S. H. Jacobson, 2012. "A Branch, Bound, and Remember Algorithm for the Simple Assembly Line Balancing Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 433-442, August.
    5. Boysen, Nils & Schulze, Philipp & Scholl, Armin, 2022. "Assembly line balancing: What happened in the last fifteen years?," European Journal of Operational Research, Elsevier, vol. 301(3), pages 797-814.
    6. Pape, Tom, 2015. "Heuristics and lower bounds for the simple assembly line balancing problem type 1: Overview, computational tests and improvements," European Journal of Operational Research, Elsevier, vol. 240(1), pages 32-42.
    7. Bukchin, Yossi & Raviv, Tal, 2018. "Constraint programming for solving various assembly line balancing problems," Omega, Elsevier, vol. 78(C), pages 57-68.
    8. Bautista, Joaquín & Pereira, Jordi, 2009. "A dynamic programming based heuristic for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 194(3), pages 787-794, May.
    9. Scholl, Armin & Fliedner, Malte & Boysen, Nils, 2010. "Absalom: Balancing assembly lines with assignment restrictions," European Journal of Operational Research, Elsevier, vol. 200(3), pages 688-701, February.
    10. Morrison, David R. & Sewell, Edward C. & Jacobson, Sheldon H., 2014. "An application of the branch, bound, and remember algorithm to a new simple assembly line balancing dataset," European Journal of Operational Research, Elsevier, vol. 236(2), pages 403-409.
    11. Klein, Robert & Scholl, Armin, 1996. "Maximizing the production rate in simple assembly line balancing -- A branch and bound procedure," European Journal of Operational Research, Elsevier, vol. 91(2), pages 367-385, June.
    12. Schulze, Philipp & Scholl, Armin & Walter, Rico, 2024. "R-SALSA: A branch, bound, and remember algorithm for the workload smoothing problem on simple assembly lines," European Journal of Operational Research, Elsevier, vol. 312(1), pages 38-55.
    13. Peeters, Marc & Degraeve, Zeger, 2006. "An linear programming based lower bound for the simple assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 168(3), pages 716-731, February.
    14. Walter, Rico & Schulze, Philipp & Scholl, Armin, 2021. "SALSA: Combining branch-and-bound with dynamic programming to smoothen workloads in simple assembly line balancing," European Journal of Operational Research, Elsevier, vol. 295(3), pages 857-873.
    15. Scholl, Armin & Klein, Robert, 1999. "Balancing assembly lines effectively - A computational comparison," European Journal of Operational Research, Elsevier, vol. 114(1), pages 50-58, April.
    16. Sprecher, Arno, 2000. "SALBLIB: Challenging instances for assembly line balancing," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 526, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Otto, Alena & Otto, Christian & Scholl, Armin, 2013. "Systematic data generation and test design for solution algorithms on the example of SALBPGen for assembly line balancing," European Journal of Operational Research, Elsevier, vol. 228(1), pages 33-45.
    18. Becker, Christian & Scholl, Armin, 2009. "Balancing assembly lines with variable parallel workplaces: Problem definition and effective solution procedure," European Journal of Operational Research, Elsevier, vol. 199(2), pages 359-374, December.
    19. Fleszar, Krzysztof & Hindi, Khalil S., 2003. "An enumerative heuristic and reduction methods for the assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 145(3), pages 606-620, March.
    20. Sternatz, Johannes, 2014. "Enhanced multi-Hoffmann heuristic for efficiently solving real-world assembly line balancing problems in automotive industry," European Journal of Operational Research, Elsevier, vol. 235(3), pages 740-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:229:y:2013:i:1:p:106-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.