IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i19p3717-d938366.html
   My bibliography  Save this article

Convergence of Uniformity Criteria and the Application in Numerical Integration

Author

Listed:
  • Yang Huang

    (School of Statistics and Data Science, Nankai University, Tianjin 300071, China)

  • Yongdao Zhou

    (School of Statistics and Data Science, Nankai University, Tianjin 300071, China)

Abstract

Quasi-Monte Carlo (QMC) methods have been successfully used for the estimation of numerical integrations arising in many applications. In most QMC methods, low-discrepancy sequences have been used, such as digital nets and lattice rules. In this paper, we derive the convergence rates of order of some improved discrepancies, such as centered L 2 -discrepancy, wrap-around L 2 -discrepancy, and mixture discrepancy, and propose a randomized QMC method based on a uniform design constructed by the mixture discrepancy and Baker’s transformation. Moreover, the numerical results show that the proposed method has better approximation than the Monte Carlo method and many other QMC methods, especially when the number of dimensions is less than 10.

Suggested Citation

  • Yang Huang & Yongdao Zhou, 2022. "Convergence of Uniformity Criteria and the Application in Numerical Integration," Mathematics, MDPI, vol. 10(19), pages 1-20, October.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3717-:d:938366
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/19/3717/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/19/3717/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred J. Hickernell, 2002. "Uniform designs limit aliasing," Biometrika, Biometrika Trust, vol. 89(4), pages 893-904, December.
    2. Pierre L’Ecuyer & Christiane Lemieux, 2002. "Recent Advances in Randomized Quasi-Monte Carlo Methods," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 419-474, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luojing Yang & Xiaoping Yang & Yongdao Zhou, 2025. "Construction of Uniform Designs over a Domain with Linear Constraints," Mathematics, MDPI, vol. 13(3), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    2. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    3. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    4. Baldeaux Jan, 2008. "Quasi-Monte Carlo methods for the Kou model," Monte Carlo Methods and Applications, De Gruyter, vol. 14(4), pages 281-302, January.
    5. Bastin, Fabian & Cirillo, Cinzia & Toint, Philippe L., 2006. "Application of an adaptive Monte Carlo algorithm to mixed logit estimation," Transportation Research Part B: Methodological, Elsevier, vol. 40(7), pages 577-593, August.
    6. L’Ecuyer, P. & Sanvido, C., 2010. "Coupling from the past with randomized quasi-Monte Carlo," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 476-489.
    7. Yumiao Tian & Maorong Ge & Frank Neitzel, 2020. "Variance Reduction of Sequential Monte Carlo Approach for GNSS Phase Bias Estimation," Mathematics, MDPI, vol. 8(4), pages 1-15, April.
    8. Li, Peng-Fei & Liu, Min-Qian & Zhang, Run-Chu, 2004. "Some theory and the construction of mixed-level supersaturated designs," Statistics & Probability Letters, Elsevier, vol. 69(1), pages 105-116, August.
    9. Rong-Xian Yue & Kashinath Chatterjee, 2010. "Bayesian U-type design for nonparametric response surface prediction," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(2), pages 219-231, September.
    10. Yong-Dao Zhou & Kai-Tai Fang, 2013. "An efficient method for constructing uniform designs with large size," Computational Statistics, Springer, vol. 28(3), pages 1319-1331, June.
    11. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    12. Vandewoestyne, Bart & Chi, Hongmei & Cools, Ronald, 2010. "Computational investigations of scrambled Faure sequences," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 522-535.
    13. Narayanaswamy Balakrishnan & Hong Qin & Kashinath Chatterjee, 2016. "Generalized projection discrepancy and its applications in experimental designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 19-35, January.
    14. Hatem Ben-Ameur & Pierre L'Ecuyer & Christiane Lemieux, 2004. "Combination of General Antithetic Transformations and Control Variables," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 946-960, November.
    15. F. Y. Kuo & W. T. M. Dunsmuir & I. H. Sloan & M. P. Wand & R. S. Womersley, 2008. "Quasi-Monte Carlo for Highly Structured Generalised Response Models," Methodology and Computing in Applied Probability, Springer, vol. 10(2), pages 239-275, June.
    16. Zhijian He & Xiaoqun Wang, 2021. "An Integrated Quasi-Monte Carlo Method for Handling High Dimensional Problems with Discontinuities in Financial Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 693-718, February.
    17. Kang Wang & Zujun Ou & Jiaqi Liu & Hongyi Li, 2021. "Uniformity pattern of q-level factorials under mixture discrepancy," Statistical Papers, Springer, vol. 62(4), pages 1777-1793, August.
    18. Hong Qin & Mingyao Ai, 2007. "A note on the connection between uniformity and generalized minimum aberration," Statistical Papers, Springer, vol. 48(3), pages 491-502, September.
    19. Fasheng Sun & Jie Chen & Min-Qian Liu, 2011. "Connections between uniformity and aberration in general multi-level factorials," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 305-315, May.
    20. Yu, Jun & Meng, Xiran & Wang, Yaping, 2023. "Optimal designs for semi-parametric dose-response models under random contamination," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:19:p:3717-:d:938366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.