IDEAS home Printed from https://ideas.repec.org/a/gam/jlogis/v9y2025i2p66-d1665115.html
   My bibliography  Save this article

Optimizing Resilient Sustainable Citrus Supply Chain Design

Author

Listed:
  • Sherin Bishara

    (Industrial Engineering Department, Faculty of Engineering, October University for Modern Science and Arts, Cairo 12451, Egypt)

  • Nermine Harraz

    (Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
    Department of Industrial Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
    Center for Engineering and Technology Innovations, King Khalid University, Abha 61421, Saudi Arabia)

  • Hamdy Elwany

    (Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

  • Hadi Fors

    (Production Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt)

Abstract

Background: Growing environmental concerns and the vulnerability of global supply chains to disruptions, such as pandemics, natural disasters, and logistical failures, necessitate the design of sustainable and resilient supply chains. Methods: A novel multi-period mixed-integer linear programming model is developed with the objective of maximizing supply chain profit to design a complete citrus supply chain, which incorporates the production of citrus fruit and juice, and accommodates resilience and sustainability perspectives. Results: A comprehensive citrus supply chain scenario is presented to support the applicability of the proposed model, leveraging real data from citrus supply chain stakeholders in Egypt. Moreover, an actual case study involving a citrus processing company in Egypt is demonstrated. Gurobi software is used to solve the developed model. To build a resilient supply chain which can cope with different disruptions, different scenarios are modeled and strategies for having multiple suppliers, backup capacity, and alternative logistics routes are evaluated. Conclusions: The findings underscore the critical role of resilience in supply chain management, particularly in the agri-food sector. Moreover, the proposed model not only maximizes supply chain profitability but also equips stakeholders with the tools necessary to navigate challenges effectively.

Suggested Citation

  • Sherin Bishara & Nermine Harraz & Hamdy Elwany & Hadi Fors, 2025. "Optimizing Resilient Sustainable Citrus Supply Chain Design," Logistics, MDPI, vol. 9(2), pages 1-31, May.
  • Handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:66-:d:1665115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2305-6290/9/2/66/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2305-6290/9/2/66/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. G. Behzadi & M.J. O’Sullivan & T.L. Olsen & A. Zhang, 2018. "Allocation flexibility for agribusiness supply chains under market demand disruption," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3524-3546, May.
    2. Abdelrahman Ali & Chunping Xia & Moustafa Ismaiel & N’Banan Ouattara & Irfan Mahmood & Dessalegn Anshiso, 2021. "Analysis of determinants to mitigate food losses and waste in the developing countries: empirical evidence from Egypt," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(6), pages 1-26, August.
    3. Emenike, Scholastica N. & Falcone, Gioia, 2020. "A review on energy supply chain resilience through optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Sherin Beshara & Ahmed Kassem & Hadi Fors & Nermine Harraz, 2024. "A Comprehensive Review and Mapping Citrus Supply Chains from a Sustainability Perspective across the European Union, Middle East, and Africa," Sustainability, MDPI, vol. 16(19), pages 1-20, October.
    5. Ana Esteso & M.M.E. Alemany & Angel Ortiz, 2018. "Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models," International Journal of Production Research, Taylor & Francis Journals, vol. 56(13), pages 4418-4446, July.
    6. Li, Zhuyue & Zhao, Peixin & Han, Xue, 2022. "Agri-food supply chain network disruption propagation and recovery based on cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    7. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clavijo-Buritica, Nicolás & Triana-Sanchez, Laura & Escobar, John Willmer, 2023. "A hybrid modeling approach for resilient agri-supply network design in emerging countries: Colombian coffee supply chain," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    2. Zhong Zhao & Ziwen Zhu, 2025. "Research on the Measurement and Improvement in Fresh Product Supply Chain Resilience Based on Blockchain Technology," Sustainability, MDPI, vol. 17(5), pages 1-21, February.
    3. Gital, Yeşim & Bilgen, Bilge, 2024. "Resilient strategies for managing supply and facility disruptions in a biomass supply chain," Applied Energy, Elsevier, vol. 372(C).
    4. Matthias Klumpp & Dominic Loske, 2021. "Sustainability and Resilience Revisited: Impact of Information Technology Disruptions on Empirical Retail Logistics Efficiency," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    5. Sivanandham, S. & Srivatsa Srinivas, S., 2025. "Enhancing food security at the last-mile: A light-weight and scalable decision support system for the public distribution system in India," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    6. Rafael Granillo-Macías & Héctor Rivera-Gómez & Isidro Jesús González-Hernández & Francisca Santana-Robles, 2024. "Reconfiguration of Agrifood Supply Chain Management in Latin America during COVID-19: A Brief Literature Review," Sustainability, MDPI, vol. 16(9), pages 1-22, April.
    7. Soleman Imbiri & Raufdeen Rameezdeen & Nicholas Chileshe & Larissa Statsenko, 2023. "Stakeholder Perspectives on Supply Chain Risks: The Case of Indonesian Palm Oil Industry in West Papua," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    8. Sandipa Bhattacharya & Mitali Sarkar & Biswajit Sarkar & Lakshmi Thangavelu, 2023. "Exploring Sustainability and Economic Growth through Generation of Renewable Energy with Respect to the Dynamical Environment," Mathematics, MDPI, vol. 11(19), pages 1-22, September.
    9. Limin Zhang & Fei Gu & Mingke He, 2024. "The Influence of Digital Transformation on the Reconfigurability and Performance of Supply Chains: A Study of the Electronic, Machinery, and Home Appliance Manufacturing Industries in China," Sustainability, MDPI, vol. 16(7), pages 1-22, March.
    10. Gholami-Zanjani, Seyed Mohammad & Klibi, Walid & Jabalameli, Mohammad Saeed & Pishvaee, Mir Saman, 2021. "The design of resilient food supply chain networks prone to epidemic disruptions," International Journal of Production Economics, Elsevier, vol. 233(C).
    11. Shamoushaki, Moein & Koh, S.C. Lenny, 2025. "Novel maturity scoring for hydrogen standards and economy in G20," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    12. Nouira, Imen & Hammami, Ramzi & Fernandez Arias, Alina & Gondran, Natacha & Frein, Yannick, 2022. "Olive oil supply chain design with organic and conventional market segments and consumers’ preference to local products," International Journal of Production Economics, Elsevier, vol. 247(C).
    13. Pratibha Wasan & Ashwani Kumar & Sunil Luthra, 2023. "How can banks and finance companies incorporate value chain factors in their risk management strategy? The case of agro‐food firms," Business Strategy and the Environment, Wiley Blackwell, vol. 32(1), pages 858-877, January.
    14. Pritee Ray, 2021. "Agricultural Supply Chain Risk Management Under Price and Demand Uncertainty," International Journal of System Dynamics Applications (IJSDA), IGI Global, vol. 10(2), pages 17-32, April.
    15. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. De, Arijit & Gorton, Matthew & Hubbard, Carmen & Aditjandra, Paulus, 2022. "Optimization model for sustainable food supply chains: An application to Norwegian salmon," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    17. Peng Jiang & Jiří Jaromír Klemeš & Yee Van Fan & Xiuju Fu & Yong Mong Bee, 2021. "More Is Not Enough: A Deeper Understanding of the COVID-19 Impacts on Healthcare, Energy and Environment Is Crucial," IJERPH, MDPI, vol. 18(2), pages 1-22, January.
    18. Amin Mahmoudi & Saad Ahmed Javed & Abbas Mardani, 2022. "Gresilient supplier selection through Fuzzy Ordinal Priority Approach: decision-making in post-COVID era," Operations Management Research, Springer, vol. 15(1), pages 208-232, June.
    19. Lo, Shirleen Lee Yuen & How, Bing Shen & Teng, Sin Yong & Lam, Hon Loong & Lim, Chun Hsion & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Stochastic techno-economic evaluation model for biomass supply chain: A biomass gasification case study with supply chain uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Shaviv, Elad & Zemah-Shamir, Shiri & Parag, Yael & Teschner, Naama, 2025. "A delicate dance: Value-added services and electricity security in decentralized systems," Energy Policy, Elsevier, vol. 200(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlogis:v:9:y:2025:i:2:p:66-:d:1665115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.