IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i11p457-d446778.html
   My bibliography  Save this article

Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands

Author

Listed:
  • Birka Wicke

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

  • Ingeborg Kluts

    (Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

  • Jan Peter Lesschen

    (Wageningen Environmental Research, Wageningen University and Research, Droevendaalsesteeg 3, 6708 PB Wageningen, The Netherlands)

Abstract

Agricultural intensification is considered essential for meeting growing demand for food and biomass for energy purposes. Intensifying grasslands is under-represented, although it is a promising option given their large land area and relatively low management levels. This study quantifies the bioenergy potential from intensifying temporary grasslands in Europe and the integral greenhouse gas emission effects in 2030. We first conducted a literature review of intensification options for European grasslands and then applied the environmental impact assessment model MITERRA-Europe to implement the key intensification option of using multi-species grass mixtures. The results showed that 853 kha (or 8%) of temporary grassland could be made sustainably available for additional biomass production. This can be translated into a bioethanol potential of 23 PJ yr −1 and an emission mitigation potential of 5.8 Mt CO 2 -eq yr −1 (if conventional grass mixture from surplus temporary grassland is used for energy) or 72 PJ yr −1 and 4.0 Mt CO 2 -eq yr −1 (if surplus temporary grassland is used for grassy energy crops). Although the bioenergy potential is limited, the key advantage of intensification measure is that it results in a better environmental performance of temporary grasslands. This makes it a key option for sustainably producing bioenergy in areas with high shares of temporary grasslands.

Suggested Citation

  • Birka Wicke & Ingeborg Kluts & Jan Peter Lesschen, 2020. "Bioenergy Potential and Greenhouse Gas Emissions from Intensifying European Temporary Grasslands," Land, MDPI, vol. 9(11), pages 1-18, November.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:457-:d:446778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/11/457/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/11/457/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Wit, Marc & Londo, Marc & Faaij, André, 2011. "Productivity developments in European agriculture: Relations to and opportunities for biomass production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2397-2412, June.
    2. Smit, H.J. & Metzger, M.J. & Ewert, F., 2008. "Spatial distribution of grassland productivity and land use in Europe," Agricultural Systems, Elsevier, vol. 98(3), pages 208-219, October.
    3. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    4. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Leblanc &, 2020. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Climatic Change, Springer, vol. 163(3), pages 1553-1568, December.
    5. Kluts, Ingeborg & Wicke, Birka & Leemans, Rik & Faaij, André, 2017. "Sustainability constraints in determining European bioenergy potential: A review of existing studies and steps forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 719-734.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Banaś & Katarzyna Utnik-Banaś, 2022. "Using Timber as a Renewable Resource for Energy Production in Sustainable Forest Management," Energies, MDPI, vol. 15(6), pages 1-8, March.
    2. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    3. Fan, Yee Van & Romanenko, Sergey & Gai, Limei & Kupressova, Ekaterina & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2021. "Biomass integration for energy recovery and efficient use of resources: Tomsk Region," Energy, Elsevier, vol. 235(C).
    4. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Camilla C. N. Oliveira & Gerd Angelkorte & Pedro R. R. Rochedo & Alexandre Szklo, 2021. "The role of biomaterials for the energy transition from the lens of a national integrated assessment model," Climatic Change, Springer, vol. 167(3), pages 1-22, August.
    2. Mandley, S.J. & Daioglou, V. & Junginger, H.M. & van Vuuren, D.P. & Wicke, B., 2020. "EU bioenergy development to 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    3. Dumortier, Jerome & Elobeid, Amani & Carriquiry, Miguel, 2022. "Light-duty vehicle fleet electrification in the United States and its effects on global agricultural markets," Ecological Economics, Elsevier, vol. 200(C).
    4. Lehtveer, Mariliis & Fridahl, Mathias, 2020. "Managing variable renewables with biomass in the European electricity system: Emission targets and investment preferences," Energy, Elsevier, vol. 213(C).
    5. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    6. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    7. Baka, Jennifer & Roland-Holst, David, 2009. "Food or fuel? What European farmers can contribute to Europe's transport energy requirements and the Doha Round," Energy Policy, Elsevier, vol. 37(7), pages 2505-2513, July.
    8. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2010. "Fossil energy and GHG saving potentials of pig farming in the EU," Energy Policy, Elsevier, vol. 38(5), pages 2561-2571, May.
    9. Sarah Jansen & William Foster & Gustavo Anríquez & Jorge Ortega, 2021. "Understanding Farm-Level Incentives within the Bioeconomy Framework: Prices, Product Quality, Losses, and Bio-Based Alternatives," Sustainability, MDPI, vol. 13(2), pages 1-21, January.
    10. Argueyrolles, Robin & Delzeit, Ruth, 2022. "The interconnections between Fossil Fuel Subsidy Reforms and biofuels," Conference papers 333492, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    11. Aruga, Kentaka, 2011. "非遺伝子組換え大豆とエネルギーの価格関係について [Relationships among the Non-Genetically Modified Soybean and Energy Prices]," MPRA Paper 38186, University Library of Munich, Germany, revised 20 Aug 2011.
    12. Ribeiro, Lauro André & Silva, Patrícia Pereira da, 2013. "Surveying techno-economic indicators of microalgae biofuel technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 89-96.
    13. Gal Hochman & Chrysostomos Tabakis, 2020. "Biofuels and Their Potential in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-17, September.
    14. Mohlin, Kristina & Camuzeaux, Jonathan R. & Muller, Adrian & Schneider, Marius & Wagner, Gernot, 2018. "Factoring in the forgotten role of renewables in CO2 emission trends using decomposition analysis," Energy Policy, Elsevier, vol. 116(C), pages 290-296.
    15. Khoo, Hsien H., 2015. "Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 100-119.
    16. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    17. Fung, Timothy K.F. & Choi, Doo Hun & Scheufele, Dietram A. & Shaw, Bret R., 2014. "Public opinion about biofuels: The interplay between party identification and risk/benefit perception," Energy Policy, Elsevier, vol. 73(C), pages 344-355.
    18. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    19. Stefan Mann, 2016. "Governing complementary responsibility goods through hybrid systems in a globalizing world," Journal of Socio-Economics in Agriculture (Until 2015: Yearbook of Socioeconomics in Agriculture), Swiss Society for Agricultural Economics and Rural Sociology, vol. 9(1), pages 14-21.
    20. Winden, Matthew & Cruze, Nathan & Haab, Tim & Bakshi, Bhavik, 2015. "Monetized value of the environmental, health and resource externalities of soy biodiesel," Energy Economics, Elsevier, vol. 47(C), pages 18-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:11:p:457-:d:446778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.