IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i5p1073-d1656525.html
   My bibliography  Save this article

Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region

Author

Listed:
  • Juan David Mahecha-Pulido

    (Instituto de Ciencias Ambientales de la Orinoquia Colombiana ICAOC, Facultad de Ciencias Básicas e, Ingeniería, Universidad de los Llanos, Campus Barcelona, Villavicencio 500001, Colombia)

  • Juan Manuel Trujillo-González

    (Instituto de Ciencias Ambientales de la Orinoquia Colombiana ICAOC, Facultad de Ciencias Básicas e, Ingeniería, Universidad de los Llanos, Campus Barcelona, Villavicencio 500001, Colombia)

  • Marco Aurelio Torres-Mora

    (Instituto de Ciencias Ambientales de la Orinoquia Colombiana ICAOC, Facultad de Ciencias Básicas e, Ingeniería, Universidad de los Llanos, Campus Barcelona, Villavicencio 500001, Colombia)

  • Francisco J. García-Navarro

    (High Technical School of Agricultural Engineers of Ciudad Real, University of Castilla-La Mancha, 13071 Ciudad Real, Castilla-La Mancha, Spain)

  • Raimundo Jiménez-Ballesta

    (Department of Geology and Geochemistry, Autonomous University of Madrid, 28049 Madrid, Madrid, Spain)

Abstract

This study assesses the current status of selected soil properties of an expanding equatorial agricultural region (Arauca, Colombia) across six landscapes, with the final focus being on evaluating overall soil quality. Field surveys, morphological descriptions, and laboratory analyses of 133 soil profiles were investigated. The landscapes include mountains (25 profiles), foothills (17), hills (11), alluvial plains (43), alluvial plains with dunes (21), and alluvial valleys (16). Soils are classified into six Reference Soil Groups (WRB FAO): Gleysols, Acrisols, Arenosols, Ferralsols, Leptosols, and Cambisols. The findings indicate high acidity, low fertility, and deficient exchangeable bases. Indeed, pH ranges from extremely acid to slightly acid (3.5–6.4), and exchangeable acidity saturation percentage (%SAI) values reach 100% in some areas. Soil textures vary from clay loam to sandy loam and clay. Nutrient contents are ranked in the order Cambisols > Gleysols > Arenosols > Ferralsols > Acrisols > Leptosols. Correlation analysis reveals that clay content positively influences the exchangeable basis percentage, while organic matter (OM) negatively correlates with the nutrients phosphorus, calcium, and magnesium. This study highlights that landscape position influences soil quality, with lower landscape positions having better quality than upper ones. These results provide insights into soil fertility and nutrient availability, which helps to predict suitable plant cultivation areas when increasing areas for agricultural use versus forestry in Arauca. The inclusion or maintenance of diverse tree species is a key element in maintaining the production of organic matter and, consequently, generating better soil quality.

Suggested Citation

  • Juan David Mahecha-Pulido & Juan Manuel Trujillo-González & Marco Aurelio Torres-Mora & Francisco J. García-Navarro & Raimundo Jiménez-Ballesta, 2025. "Current Status of Acid Soils Under Different Landform Types in an Expanding Equatorial Agricultural Region," Land, MDPI, vol. 14(5), pages 1-19, May.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1073-:d:1656525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/5/1073/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/5/1073/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    2. Juan M. Trujillo-González & Juan D. Mahecha-Pulido & Marco A. Torres-Mora & Eric C. Brevik & Saskia D. Keesstra & Raimundo Jiménez-Ballesta, 2017. "Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate," Agriculture, MDPI, vol. 7(7), pages 1-11, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    2. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    3. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    4. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    5. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    6. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    7. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    8. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    9. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    10. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.
    11. Alexander D. Chapman & Stephen E. Darby & Hoàng M. Hồng & Emma L. Tompkins & Tri P. D. Van, 2016. "Adaptation and development trade-offs: fluvial sediment deposition and the sustainability of rice-cropping in An Giang Province, Mekong Delta," Climatic Change, Springer, vol. 137(3), pages 593-608, August.
    12. Rosa, R.D. & Ramos, T.B. & Pereira, L.S., 2016. "The dual Kc approach to assess maize and sweet sorghum transpiration and soil evaporation under saline conditions: Application of the SIMDualKc model," Agricultural Water Management, Elsevier, vol. 177(C), pages 77-94.
    13. Chen, Chien-Ming & van Dalen, Jan, 2010. "Measuring dynamic efficiency: Theories and an integrated methodology," European Journal of Operational Research, Elsevier, vol. 203(3), pages 749-760, June.
    14. Tamara Tadić & Bojana Marković & Jelena Radulović & Jelena Lukić & Ljiljana Suručić & Aleksandra Nastasović & Antonije Onjia, 2022. "A Core-Shell Amino-Functionalized Magnetic Molecularly Imprinted Polymer Based on Glycidyl Methacrylate for Dispersive Solid-Phase Microextraction of Aniline," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    15. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    16. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    17. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    18. Horacio Augstburger & Fabian Käser & Stephan Rist, 2019. "Assessing Food Systems and Their Impact on Common Pool Resources and Resilience," Land, MDPI, vol. 8(4), pages 1-25, April.
    19. Samuel I. Haruna & Nsalambi V. Nkongolo, 2020. "Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients," Agriculture, MDPI, vol. 10(6), pages 1-14, June.
    20. Aditi Sengupta & Priyanka Kushwaha & Antonia Jim & Peter A. Troch & Raina Maier, 2020. "New Soil, Old Plants, and Ubiquitous Microbes: Evaluating the Potential of Incipient Basaltic Soil to Support Native Plant Growth and Influence Belowground Soil Microbial Community Composition," Sustainability, MDPI, vol. 12(10), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:5:p:1073-:d:1656525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.