IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p884-d1636221.html
   My bibliography  Save this article

Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate

Author

Listed:
  • Shuixia Zhao

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Institute of Pastoral Hydraulic Research, Ministry of Water Resources, Hohhot 010020, China)

  • Mengmeng Zhang

    (College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
    Inner Mongolia Key Laboratory of Disaster and Ecological Security on the Mongolian Plateau, Hohhot 010022, China)

  • Yingjie Wu

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    Institute of Pastoral Hydraulic Research, Ministry of Water Resources, Hohhot 010020, China)

  • Enliang Guo

    (College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
    Inner Mongolia Key Laboratory of Disaster and Ecological Security on the Mongolian Plateau, Hohhot 010022, China)

  • Yongfang Wang

    (College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, China
    Inner Mongolia Key Laboratory of Disaster and Ecological Security on the Mongolian Plateau, Hohhot 010022, China
    Provincial Key Laboratories of Mongolian Plateau’s Climate System, Hohhot 010022, China)

  • Shengjie Cui

    (Yinshanbeilu Grassland Eco-Hydrology National Observation and Research Station, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
    College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China)

  • Tomasz Kolerski

    (Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland)

Abstract

The desert steppe ecosystem at the Northern Foothills of the Yinshan Mountains (NFYS) is characterized by its fragility and heightened sensitivity to global climate change. Understanding the response and lag effects of Gross Primary Productivity (GPP) to climate change is imperative for advancing ecological management and fostering sustainable development. The spatiotemporal dynamics of chlorophyll fluorescence-based GPP data and its responses to precipitation, temperature, and extreme climate from 2001 to 2023 were analyzed. The random forest model and the partial least squares regression model were employed to further elucidate the response mechanisms of GPP to extreme climate, with a specific focus on the lag effect. The findings revealed that the GPP in the NFYS exhibited distinct regional characteristics, demonstrating a predominantly increasing trend over the past 23 years. The region has experienced a warming and drying trend, marked by a decrease in the intensity and frequency of extreme precipitation events, and an increase in extremely high temperatures and consecutive hot days, except a slight, albeit insignificant, increase in precipitation in the northeastern part. GPP exhibits varying degrees of lag, ranging from one to three months, in response to both normal and extreme climatic conditions, with a more immediate response to extreme temperatures than to precipitation. The influence of different climatic conditions on the lag effects of GPP can amplify the negative effects of extreme temperatures and the positive impact of extreme precipitation. The anticipated trend towards a warmer and more humid climate is projected to foster an increase in GPP. This research is of great theoretical and practical significance for deeply understanding the adaptation mechanisms of ecosystems under the context of climate change, optimizing desertification control strategies, and enhancing regional ecological resilience.

Suggested Citation

  • Shuixia Zhao & Mengmeng Zhang & Yingjie Wu & Enliang Guo & Yongfang Wang & Shengjie Cui & Tomasz Kolerski, 2025. "Response of Gross Primary Productivity (GPP) of the Desert Steppe Ecosystem in the Northern Foothills of Yinshan Mountain to Extreme Climate," Land, MDPI, vol. 14(4), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:884-:d:1636221
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/884/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/884/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yichen Zhang & Shilong Piao & Yan Sun & Brendan M. Rogers & Xiangyi Li & Xu Lian & Zhihua Liu & Anping Chen & Josep Peñuelas, 2022. "Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere," Nature Climate Change, Nature, vol. 12(6), pages 581-586, June.
    2. Markus Reichstein & Michael Bahn & Philippe Ciais & Dorothea Frank & Miguel D. Mahecha & Sonia I. Seneviratne & Jakob Zscheischler & Christian Beer & Nina Buchmann & David C. Frank & Dario Papale & An, 2013. "Climate extremes and the carbon cycle," Nature, Nature, vol. 500(7462), pages 287-295, August.
    3. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
    4. L. Samaniego & S. Thober & R. Kumar & N. Wanders & O. Rakovec & M. Pan & M. Zink & J. Sheffield & E. F. Wood & A. Marx, 2018. "Anthropogenic warming exacerbates European soil moisture droughts," Nature Climate Change, Nature, vol. 8(5), pages 421-426, May.
    5. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaoxu & Liu, Xiaomin & Yang, Yaotian & Yu, Miao & Tian, Hailong, 2024. "The productivity anomalies and economic losses of different grassland ecosystems caused by flash drought," Agricultural Water Management, Elsevier, vol. 305(C).
    2. Jia, Binghao & Wang, Yuanyuan & Xie, Zhenghui, 2018. "Responses of the terrestrial carbon cycle to drought over China: Modeling sensitivities of the interactive nitrogen and dynamic vegetation," Ecological Modelling, Elsevier, vol. 368(C), pages 52-68.
    3. Li, Shuoshuo & Liu, Yaobin & Wei, Guoen & Bi, Mo & He, Bao-Jie, 2024. "Carbon surplus or carbon deficit under land use transformation in China?," Land Use Policy, Elsevier, vol. 143(C).
    4. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    5. Daniel Steel & Kian Mintz-Woo & C. Tyler DesRoches, 2024. "Collapse, social tipping dynamics, and framing climate change," Politics, Philosophy & Economics, , vol. 23(3), pages 230-251, August.
    6. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    7. Moritz von Cossel & Andrea Bauerle & Meike Boob & Ulrich Thumm & Martin Elsaesser & Iris Lewandowski, 2019. "The Performance of Mesotrophic Arrhenatheretum Grassland under Different Cutting Frequency Regimes for Biomass Production in Southwest Germany," Agriculture, MDPI, vol. 9(9), pages 1-17, September.
    8. Trnka, Miroslav & Vizina, Adam & Hanel, Martin & Balek, Jan & Fischer, Milan & Hlavinka, Petr & Semerádová, Daniela & Štěpánek, Petr & Zahradníček, Pavel & Skalák, Petr & Eitzinger, Josef & Dubrovský,, 2022. "Increasing available water capacity as a factor for increasing drought resilience or potential conflict over water resources under present and future climate conditions," Agricultural Water Management, Elsevier, vol. 264(C).
    9. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    10. Juanjuan Han & Chaowei Tan & Jingyi Ru & Jian Song & Dafeng Hui & Shiqiang Wan, 2025. "Coinciding spring and autumn frosts have a limited impact on carbon fluxes in a grassland ecosystem," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    11. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    12. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    13. Yue He & Shilong Piao & Philippe Ciais & Hao Xu & Thomas Gasser, 2024. "Future land carbon removals in China consistent with national inventory," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    14. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Cristina Serban & Carmen Maftei, 2025. "Remote Sensing Evaluation of Drought Effects on Crop Yields Across Dobrogea, Romania, Using Vegetation Health Index (VHI)," Agriculture, MDPI, vol. 15(7), pages 1-32, March.
    16. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    17. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    18. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    19. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    20. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:884-:d:1636221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.