IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p789-d1629081.html
   My bibliography  Save this article

Climatic Structure Analysis of Olive Growing in Extremadura, Southwestern Spain

Author

Listed:
  • Fulgencio Honorio

    (Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

  • Abelardo García-Martín

    (Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

  • Cristina Aguirado

    (Centro Ibérico de Investigación en Almacenamiento Energético, CIIAE, Polígono 13, Parcela 31, “El Cuartillo”, 10004 Cáceres, Spain)

  • Luis L. Paniagua

    (Departamento de Ingeniería del Medio Agronómico y Forestal, Escuela de Ingenierías Agrarias, Universidad de Extremadura, Avda. Adolfo Suárez, s/n., 06007 Badajoz, Spain)

Abstract

The present study was conducted in Extremadura, a region in southwestern Spain with a significant area dedicated to olive cultivation. An analysis of the olive growing climatology of its territory was conducted using bioclimatic indices that affect the development of olive cultivation, focusing on water requirements, thermal requirements, and leaf carbohydrate synthesis. The study revealed that very dry conditions during the olive growing season are the main characteristic of the Mediterranean climate in the region. A principal component analysis was performed to analyze the main sources of variability, revealing two main components, determined by annual rainfall, annual water requirement, mean annual temperature, degree days above 14.4 °C accumulated during the olive growing season, and the number of days with optimal temperatures for leaf carbohydrate synthesis. Three homogeneous groups were determined by cluster analysis, one of which had cooler thermal conditions and no water requirements. The study found that an increase in the olive growing season or a shortening of the dormant period could result in a higher water input during the growing season and a lack of accumulation of chilling hours during the dormant period, causing crop maintenance problems in warmer locations. Climate change is expected to have significant impacts on this crop where climatic conditions are already very hot and dry. In the future, it is possible that the current olive-growing areas in Extremadura will move to other areas where the temperature is cooler.

Suggested Citation

  • Fulgencio Honorio & Abelardo García-Martín & Cristina Aguirado & Luis L. Paniagua, 2025. "Climatic Structure Analysis of Olive Growing in Extremadura, Southwestern Spain," Land, MDPI, vol. 14(4), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:789-:d:1629081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abelardo García-Martín & Luis L. Paniagua & Francisco J. Moral & Francisco J. Rebollo & María A. Rozas, 2021. "Spatiotemporal Analysis of the Frost Regime in the Iberian Peninsula in the Context of Climate Change (1975–2018)," Sustainability, MDPI, vol. 13(15), pages 1-22, July.
    2. S. Asseng & F. Ewert & P. Martre & R. P. Rötter & D. B. Lobell & D. Cammarano & B. A. Kimball & M. J. Ottman & G. W. Wall & J. W. White & M. P. Reynolds & P. D. Alderman & P. V. V. Prasad & P. K. Agga, 2015. "Rising temperatures reduce global wheat production," Nature Climate Change, Nature, vol. 5(2), pages 143-147, February.
    3. José Carlos Piñar-Fuentes & Juan Peña-Martínez & Ana Cano-Ortiz, 2024. "Integrating Thermo-Ombroclimatic Indicators into Sustainable Olive Management: A Pathway for Innovation and Education," Agriculture, MDPI, vol. 14(12), pages 1-25, November.
    4. Fulgencio Honorio & Cristina Aguirado & Luis L. Paniagua & Abelardo García-Martín & Lourdes Rebollo & Francisco J. Rebollo, 2024. "Exploring the Climate and Topography of Olive Orchards in Extremadura, Southwestern Spain," Land, MDPI, vol. 13(4), pages 1-23, April.
    5. Greven, Marc & Neal, Sue & Green, Steve & Dichio, Bartolomeo & Clothier, Brent, 2009. "The effects of drought on the water use, fruit development and oil yield from young olive trees," Agricultural Water Management, Elsevier, vol. 96(11), pages 1525-1531, November.
    6. Manolis G. Grillakis & Evangelos G. Kapetanakis & Eleni Goumenaki, 2022. "Climate change implications for olive flowering in Crete, Greece: projections based on historical data," Climatic Change, Springer, vol. 175(1), pages 1-18, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chakravarty, Shourish & Villoria, Nelson B., 2020. "Estimating the spatially heterogeneous elasticities of land supply to U.S. crop agriculture," Conference papers 333156, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    3. repec:zib:zbppsc:v:1:y:2021:i:1:p:4-7 is not listed on IDEAS
    4. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    5. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    6. Ben-Gal, Alon & Kool, Dilia & Agam, Nurit & van Halsema, Gerardo E. & Yermiyahu, Uri & Yafe, Ariel & Presnov, Eugene & Erel, Ran & Majdop, Ahmed & Zipori, Isaac & Segal, Eran & Rüger, Simon & Zimmerma, 2010. "Whole-tree water balance and indicators for short-term drought stress in non-bearing 'Barnea' olives," Agricultural Water Management, Elsevier, vol. 98(1), pages 124-133, December.
    7. Zihao Wang & Wenxi Wang & Xiaoming Xie & Yongfa Wang & Zhengzhao Yang & Huiru Peng & Mingming Xin & Yingyin Yao & Zhaorong Hu & Jie Liu & Zhenqi Su & Chaojie Xie & Baoyun Li & Zhongfu Ni & Qixin Sun &, 2022. "Dispersed emergence and protracted domestication of polyploid wheat uncovered by mosaic ancestral haploblock inference," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Tan, Lili & Feng, Puyu & Li, Baoguo & Huang, Feng & Liu, De Li & Ren, Pinpin & Liu, Haipeng & Srinivasan, Raghavan & Chen, Yong, 2022. "Climate change impacts on crop water productivity and net groundwater use under a double-cropping system with intensive irrigation in the Haihe River Basin, China," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    10. Xiang Chen & lvzhou Liu & Hongmei Cai & Baoqiang Zheng & Jincai Li, 2024. "Effects of spring low-temperature stress on winter wheat seed-setting characteristics of spike," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 70(2), pages 84-92.
    11. Shoukat, Muhammad Rizwan & Wang, Jingjing & Habib-ur-Rahman, Muhammad & Hui, Xin & Hoogenboom, Gerrit & Yan, Haijun, 2024. "Adaptation strategies for winter wheat production at farmer fields under a changing climate: Employing crop and multiple global climate models," Agricultural Systems, Elsevier, vol. 220(C).
    12. Hao, Shirui & Ryu, Dongryeol & Western, Andrew & Perry, Eileen & Bogena, Heye & Franssen, Harrie Jan Hendricks, 2021. "Performance of a wheat yield prediction model and factors influencing the performance: A review and meta-analysis," Agricultural Systems, Elsevier, vol. 194(C).
    13. Correa-Tedesco, Guillermo & Rousseaux, M. Cecilia & Searles, Peter S., 2010. "Plant growth and yield responses in olive (Olea europaea) to different irrigation levels in an arid region of Argentina," Agricultural Water Management, Elsevier, vol. 97(11), pages 1829-1837, November.
    14. Gaupp, Franziska & Hall, Jim & Mitchell, Dann & Dadson, Simon, 2019. "Increasing risks of multiple breadbasket failure under 1.5 and 2 °C global warming," Agricultural Systems, Elsevier, vol. 175(C), pages 34-45.
    15. Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
    16. Zimmermann, Andrea & Webber, Heidi & Zhao, Gang & Ewert, Frank & Kros, Johannes & Wolf, Joost & Britz, Wolfgang & de Vries, Wim, 2017. "Climate change impacts on crop yields, land use and environment in response to crop sowing dates and thermal time requirements," Agricultural Systems, Elsevier, vol. 157(C), pages 81-92.
    17. Tomoko Hasegawa & Shinichiro Fujimori & Petr Havlík & Hugo Valin & Benjamin Leon Bodirsky & Jonathan C. Doelman & Thomas Fellmann & Page Kyle & Jason F. L. Koopman & Hermann Lotze-Campen & Daniel Maso, 2018. "Risk of increased food insecurity under stringent global climate change mitigation policy," Nature Climate Change, Nature, vol. 8(8), pages 699-703, August.
    18. M. Mehedi Hasan & Mohammad Alauddin & Md. Abdur Rashid Sarker & Mohammad Jakaria & Mahiuddin Alamgir, 2018. "Climate sensitivity of wheat yield in Bangladesh: Implications for Sustainable Development Goals 2 (SDG2) and 6 (SDG6)," Discussion Papers Series 599, School of Economics, University of Queensland, Australia.
    19. Fulgencio Honorio & Cristina Aguirado & Luis L. Paniagua & Abelardo García-Martín & Lourdes Rebollo & Francisco J. Rebollo, 2024. "Exploring the Climate and Topography of Olive Orchards in Extremadura, Southwestern Spain," Land, MDPI, vol. 13(4), pages 1-23, April.
    20. Martínez-Salgueiro, Andrea & Tarrazón-Rodón, María-Antonia, 2020. "Is diversification effective in reducing the systemic risk implied by a market for weather index-based insurance in Spain?," MPRA Paper 119924, University Library of Munich, Germany, revised 19 May 2021.
    21. A. Mukherjee & S. Saha & S. C. Lellyett & (corresponding author) A.K.S. Huda, 2022. "Impact Of Climate Change And Variability On Food Security In The Asia-Pacific Region," Asia-Pacific Sustainable Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 29(1), pages 119-141, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:789-:d:1629081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.