IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p753-d1625676.html
   My bibliography  Save this article

Quantifying the Provincial Carbon Emissions of China Embodied in Trade: The Perspective of Land Use

Author

Listed:
  • Qiqi Wu

    (Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Jijun Meng

    (Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China)

  • Cuiyutong Yang

    (Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China)

  • Likai Zhu

    (Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China)

Abstract

Land use supports production and living activities and provides ecosystem services for people. With the flow of capital, goods, and services among regions, trade leads to the transfer of carbon emissions from importing regions to exporting regions, and this is telecoupled with land systems in different regions. Although significant progress has been made in quantifying embodied carbon emissions induced by interprovincial and international trade, the telecoupling relationship between carbon emissions and land systems has not been sufficiently investigated. Here we followed the telecoupling theoretical framework and used the multi-region input–output (MRIO) model to examine the spatial pattern of embodied carbon emissions by land use in China due to interprovincial trade. The results show that the spatial patterns of embodied carbon emissions from the production end and from the consumption end are different based on land use type. The provinces with rich energy resources and favorable conditions such as Inner Mongolia, Xinjiang, and Heilongjiang undertake carbon emissions from the agricultural and industrial land use of other provinces. In contrast, the provinces with large economies but scarce resources such as Zhejiang and Guangdong export larger portions of their carbon emissions to the land use of other provinces. Across China, developed regions generally exported more carbon emissions from land use than they undertake from other developing regions. The carbon transfer in agricultural land was prominent between the eastern and western regions. The carbon emissions of industrial land were generally transferred from southern regions to northern and western areas. Our research reveals different patterns of embodied carbon emissions for different land use types, and these findings could provide more detailed information for policy-making processes to achieve fair carbon emissions and sustainable land use.

Suggested Citation

  • Qiqi Wu & Jijun Meng & Cuiyutong Yang & Likai Zhu, 2025. "Quantifying the Provincial Carbon Emissions of China Embodied in Trade: The Perspective of Land Use," Land, MDPI, vol. 14(4), pages 1-16, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:753-:d:1625676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/753/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/753/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, Yang & Li, Xunhuan & Liu, Yansui, 2020. "Land use change and driving factors in rural China during the period 1995-2015," Land Use Policy, Elsevier, vol. 99(C).
    2. Shao, Ling & Li, Yuan & Feng, Kuishuang & Meng, Jing & Shan, Yuli & Guan, Dabo, 2018. "Carbon emission imbalances and the structural paths of Chinese regions," Applied Energy, Elsevier, vol. 215(C), pages 396-404.
    3. Peters, Glen P., 2008. "From production-based to consumption-based national emission inventories," Ecological Economics, Elsevier, vol. 65(1), pages 13-23, March.
    4. Wang, Yihan & Xiong, Siqin & Ma, Xiaoming, 2022. "Carbon inequality in global trade: Evidence from the mismatch between embodied carbon emissions and value added," Ecological Economics, Elsevier, vol. 195(C).
    5. Gao, Runyi & Chuai, Xiaowei & Ge, Jingfeng & Wen, Jiqun & Zhao, Rongqin & Zuo, Tianhui, 2022. "An integrated tele-coupling analysis for requisition–compensation balance and its influence on carbon storage in China," Land Use Policy, Elsevier, vol. 116(C).
    6. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    7. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    8. Boya Zhang & Shukuan Bai & Yadong Ning & Tao Ding & Yan Zhang, 2020. "Emission Embodied in International Trade and Its Responsibility from the Perspective of Global Value Chain: Progress, Trends, and Challenges," Sustainability, MDPI, vol. 12(8), pages 1-26, April.
    9. Benedikt Bruckner & Klaus Hubacek & Yuli Shan & Honglin Zhong & Kuishuang Feng, 2022. "Impacts of poverty alleviation on national and global carbon emissions," Nature Sustainability, Nature, vol. 5(4), pages 311-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Yang & Junnian Song, 2019. "Depicting Flows of Embodied Water Pollutant Discharge within Production System: Case of an Undeveloped Region," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    2. Long, Tengju & Wu, Ge & Miao, Zhuang & Chen, Xiaodong, 2024. "Quantifying consumption-based environmental productivity from “Energy-Environment Footprints”," Energy, Elsevier, vol. 313(C).
    3. Qingqing Ban & Yiwen Li & Guiliang Tian & Zheng Wu & Qing Xia, 2023. "Carbon Inequality Embodied in Inter-Provincial Trade of China’s Yangtze River Economic Belt," Energies, MDPI, vol. 16(13), pages 1-19, June.
    4. Xu, Zhongwen & Huang, Liqiao & Liao, Maolin & Xue, Jinjun & Yoshida, Yoshikuni & Long, Yin, 2022. "Quantifying consumption-based carbon emissions of major economic sectors in Japan considering the global value chain," Structural Change and Economic Dynamics, Elsevier, vol. 63(C), pages 330-341.
    5. Jiangbai Liu & Yadong Ning & Shukuan Bai & Boya Zhang, 2025. "The Characteristics of Carbon Emissions Embodied in China’s International Economic Circulation Based on Global Value Chains," Sustainability, MDPI, vol. 17(7), pages 1-25, March.
    6. Shuping Li & Jing Meng & Klaus Hubacek & Shaikh M. S. U. Eskander & Yuan Li & Peipei Chen & Dabo Guan, 2024. "Revisiting Copenhagen climate mitigation targets," Nature Climate Change, Nature, vol. 14(5), pages 468-475, May.
    7. Lucas Chancel & Yannic Rehm, 2023. "The Carbon Footprint of Capital: Evidence from France, Germany and the US based on Distributional Environmental Accounts," PSE Working Papers halshs-04423785, HAL.
    8. Li, Jianglong & Sun, Shiqiang & Sharma, Disha & Ho, Mun Sing & Liu, Hongxun, 2023. "Tracking the drivers of global greenhouse gas emissions with spillover effects in the post-financial crisis era," Energy Policy, Elsevier, vol. 174(C).
    9. Haidi Gao & Alun Gu & Gehua Wang & Fei Teng, 2019. "A Structural Decomposition Analysis of China’s Consumption-Based Greenhouse Gas Emissions," Energies, MDPI, vol. 12(15), pages 1-17, July.
    10. Pang, Qinghua & Liu, Xuan & Zhang, Lina & Chiu, Yung-ho, 2024. "Temporal-spatial evolution of environmental inequality of embodied energy transfer within inter-provincial trade of China," Energy, Elsevier, vol. 299(C).
    11. Yu, Shasha & Yuan, Xuanyu & Yao, Xinyan & Lei, Ming, 2022. "Carbon leakage and low-carbon performance: Heterogeneity of responsibility perspectives," Energy Policy, Elsevier, vol. 165(C).
    12. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei & Su, Bin, 2020. "Who shapes China's carbon intensity and how? A demand-side decomposition analysis," Energy Economics, Elsevier, vol. 85(C).
    13. Li, Shuping & Meng, Jing & Hubacek, Klaus & Eskander, Shaikh M. S. U. & Li, Yuan & Chen, Peipei & Guan, Dabo, 2024. "Revisiting Copenhagen climate mitigation targets," LSE Research Online Documents on Economics 122815, London School of Economics and Political Science, LSE Library.
    14. Wu, Sanmang & Li, Shantong & Lei, Yalin & Li, Li, 2020. "Temporal changes in China's production and consumption-based CO2 emissions and the factors contributing to changes," Energy Economics, Elsevier, vol. 89(C).
    15. Su, Dan & Cao, Yu & Wang, Jiayi & Fang, Xiaoqian & Wu, Qing, 2023. "Toward constructing an eco-account of cultivated land by quantifying the resources flow and eco-asset transfer in China," Land Use Policy, Elsevier, vol. 132(C).
    16. Zhu, Bangzhu & Su, Bin & Li, Yingzhu & Ng, Tsan Sheng, 2020. "Embodied energy and intensity in China’s (normal and processing) exports and their driving forces, 2005-2015," Energy Economics, Elsevier, vol. 91(C).
    17. Yuru Guan & Jin Yan & Yuli Shan & Yannan Zhou & Ye Hang & Ruoqi Li & Yu Liu & Binyuan Liu & Qingyun Nie & Benedikt Bruckner & Kuishuang Feng & Klaus Hubacek, 2023. "Burden of the global energy price crisis on households," Nature Energy, Nature, vol. 8(3), pages 304-316, March.
    18. Yan Li & Yigang Wei & Hanxiao Xu & Huanwen Liu & Julien Chevallier, 2023. "Carbon monoxide and multi‐pollutants flow between China and India: A multiregional input–output model," The World Economy, Wiley Blackwell, vol. 46(8), pages 2514-2537, August.
    19. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    20. Pan, Yue & Chai, Jian & Tian, Lingyue & Zhang, Xiaokong & Wang, Jiaoyan, 2024. "Regional inequality in China's electricity trade," Energy, Elsevier, vol. 313(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:753-:d:1625676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.