IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i8p1284-d1456112.html
   My bibliography  Save this article

Evaluating the Impact of Green Spaces on Urban Heat Reduction in Rajshahi, Bangladesh Using the InVEST Model

Author

Listed:
  • Md. Mostafizur Rahman

    (Department of Urban & Regional Planning, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh)

  • Jahid Hasan

    (Department of Urban & Regional Planning, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh)

Abstract

Urban heat poses significant challenges in rapidly developing cities, particularly in countries like Bangladesh. This study investigates the cooling effects of urban green spaces in Rajshahi city, addressing a critical research gap in developing urban contexts. We examined the relationships among urban vegetation, heat mitigation, and temperature variables using the InVEST Urban Cooling Model and spatial analysis techniques. This study focused on three key relationships: Normalized Difference Vegetation Index (NDVI) and Heat Mitigation Index (HMI), HMI and Land Sur face Temperature (LST), and HMI and Air Temperature (AT). Analysis revealed a strong positive correlation between NDVI and HMI, indicating the effectiveness of vegetation in enhancing urban cooling. A robust inverse relationship between HMI and LST was observed (R 2 = 0.78, r = −0.88), with every 0.1 unit increase in HMI corresponding to a 0.53 °C decrease in LST. The HMI−AT relationship showed an even stronger correlation (R 2 = 0.84, r = −0.87), with each unit increase in HMI associated with a 2.80 °C decrease in air temperature. These findings quantify the significant role of urban green spaces in mitigating heat and provide valuable insights for urban planning in developing cities, underscoring the importance of integrating green infrastructure into urban-development strategies to combat urban heat and improve livability.

Suggested Citation

  • Md. Mostafizur Rahman & Jahid Hasan, 2024. "Evaluating the Impact of Green Spaces on Urban Heat Reduction in Rajshahi, Bangladesh Using the InVEST Model," Land, MDPI, vol. 13(8), pages 1-18, August.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1284-:d:1456112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/8/1284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/8/1284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zardo, L. & Geneletti, D. & Pérez-Soba, M. & Van Eupen, M., 2017. "Estimating the cooling capacity of green infrastructures to support urban planning," Ecosystem Services, Elsevier, vol. 26(PA), pages 225-235.
    2. Yanxia Hu & Changqing Wang & Jingjing Li, 2023. "Assessment of Heat Mitigation Services Provided by Blue and Green Spaces: An Application of the InVEST Urban Cooling Model with Scenario Analysis in Wuhan, China," Land, MDPI, vol. 12(5), pages 1-21, April.
    3. Guo, Zhengquan & Zhang, Xingping & Zheng, Yuhua & Rao, Rao, 2014. "Exploring the impacts of a carbon tax on the Chinese economy using a CGE model with a detailed disaggregation of energy sectors," Energy Economics, Elsevier, vol. 45(C), pages 455-462.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yetondé Deton & Hodabalo Kamou & Abalo Atato & Bimare Kombate & Abalo Mabafei & Josef Yoka & Marra Dourma & Atsu Kudzo Guelly & Komlan Batawila & Koffi Akpagana, 2025. "Spatiotemporal Dynamics of Urban Green Spaces and Climatic Vulnerability of Togolese Cities in the Context of Rapid Urbanisation: The Case of Lome and Kara," Land, MDPI, vol. 14(3), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Wu & Zhaoyi Wang & Qiang Xu, 2024. "Spatio-Temporal Heterogeneity of the Urban Heat Effect and Its Socio-Ecological Drivers in Yangzhou City, China," Land, MDPI, vol. 13(9), pages 1-16, September.
    2. Shuyang Chen, 2021. "The Urbanisation Impacts on the Policy Effects of the Carbon Tax in China," Sustainability, MDPI, vol. 13(12), pages 1-11, June.
    3. Xu, Qi & Liu, Kui, 2024. "Hero or Devil: A comparison of different carbon tax policies for China," Energy, Elsevier, vol. 306(C).
    4. Niu, Tong & Yao, Xilong & Shao, Shuai & Li, Ding & Wang, Wenxi, 2018. "Environmental tax shocks and carbon emissions: An estimated DSGE model," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 9-17.
    5. Zhang, Tianyuan & Tan, Qian & Cai, Yanpeng, 2024. "General equilibrium analysis of carbon tax policy on water-energy-food nexus efficiency," Energy, Elsevier, vol. 304(C).
    6. Abdul-Salam, Yakubu & Kemp, Alex & Phimister, Euan, 2022. "Energy transition in the UKCS – Modelling the effects of carbon emission charges on upstream petroleum operations," Energy Economics, Elsevier, vol. 108(C).
    7. Wang, P.P. & Huang, G.H. & Li, Y.P. & Liu, Y.Y. & Li, Y.F., 2024. "An ecological input-output CGE model for unveiling CO2 emission metabolism under China's dual carbon goals," Applied Energy, Elsevier, vol. 365(C).
    8. Wenwen Zhang & Shichun Xu & Zhengxia He & Basil Sharp & Bin Zhao & Shuxiao Wang, 2019. "Impacts of U.S. Carbon Tariffs on China’s Foreign Trade and Social Welfare," Sustainability, MDPI, vol. 11(19), pages 1-21, September.
    9. Evan Elderbrock & Chris Enright & Kathryn A. Lynch & Alexandra R. Rempel, 2020. "A Guide to Public Green Space Planning for Urban Ecosystem Services," Land, MDPI, vol. 9(10), pages 1-23, October.
    10. Mardones, Cristian & Flores, Belén, 2018. "Effectiveness of a CO2 tax on industrial emissions," Energy Economics, Elsevier, vol. 71(C), pages 370-382.
    11. Li, Aihong & Li, Shuyan & Chen, Shuai & Sun, Xiaoqin, 2024. "The role of Fintech, natural resources, and renewable energy consumption in Shaping environmental sustainability in China: A NARDL perspective," Resources Policy, Elsevier, vol. 88(C).
    12. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    13. Brzoska, P. & Grunewald, K. & Bastian, O., 2021. "A multi-criteria analytical method to assess ecosystem services at urban site level, exemplified by two German city districts," Ecosystem Services, Elsevier, vol. 49(C).
    14. Alessio Russo & Wing Tung Chan & Giuseppe T. Cirella, 2021. "Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications," Land, MDPI, vol. 10(8), pages 1-17, July.
    15. Kwang Il Kim, 2019. "Investigation of Japanese electricity industry using a CGE model of translog function," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 8(1), pages 1-18, December.
    16. Wei, Weixian & Zhao, Yurong & Wang, Jianlin & Song, Malin, 2019. "The environmental benefits and economic impacts of Fit-in-Tariff in China," Renewable Energy, Elsevier, vol. 133(C), pages 401-410.
    17. Tian, Xu & Dai, Hancheng & Geng, Yong & Huang, Zhen & Masui, Toshihiko & Fujita, Tsuyoshi, 2017. "The effects of carbon reduction on sectoral competitiveness in China: A case of Shanghai," Applied Energy, Elsevier, vol. 197(C), pages 270-278.
    18. Luca Battisti & Lauranne Pille & Thomas Wachtel & Federica Larcher & Ina Säumel, 2019. "Residential Greenery: State of the Art and Health-Related Ecosystem Services and Disservices in the City of Berlin," Sustainability, MDPI, vol. 11(6), pages 1-20, March.
    19. Chen, Shuyang & Wang, Can, 2023. "Inequality impacts of ETS penalties: A case study on the recent Chinese nationwide ETS market," Energy Policy, Elsevier, vol. 173(C).
    20. Cui, Lianbiao & Li, Rongjing & Song, Malin & Zhu, Lei, 2019. "Can China achieve its 2030 energy development targets by fulfilling carbon intensity reduction commitments?," Energy Economics, Elsevier, vol. 83(C), pages 61-73.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:8:p:1284-:d:1456112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.